Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(24): e2301759, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37350493

RESUMO

Developing a multifunctional nanoplatform to achieve efficient theranostics of tumors through multi-pronged strategies remains to be challenging. Here, the design of the intelligent redox-responsive generation 3 (G3) poly(amidoamine) dendrimer nanogels (NGs) loaded with gold nanoparticles (Au NPs) and chemotherapeutic drug toyocamycin (Au/Toy@G3 NGs) for ultrasound-enhanced cancer theranostics is showcased. The constructed hybrid NGs with a size of 193 nm possess good colloidal stability under physiological conditions, and can be dissociated to release Au NPs and Toy in the reductive glutathione-rich tumor microenvironment (TME). The released Toy can promote the apoptosis of cancer cells through endoplasmic reticulum stress amplification and cause immunogenic cell death to maturate dendritic cells. The loaded Au NPs can induce the conversion of tumor-associated macrophages from M2-type to antitumor M1-type to remodulate the immunosuppressive TME. Combined with antibody-mediated immune checkpoint blockade, effective chemoimmunotherapy of a pancreatic tumor mouse model can be realized, and the chemoimmunotherapy effect can be further ultrasound enhanced due to the sonoporation-improved tumor permeability of NGs. The developed Au/Toy@G3 NGs also enable Au-mediated computed tomography imaging of tumors. The constructed responsive dendrimeric NGs tackle tumors through a multi-pronged chemoimmunotherapy strategy targeting both cancer cells and immune cells, which hold a promising potential for clinical translations.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Neoplasias Pancreáticas , Animais , Camundongos , Nanogéis , Ouro , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Oxirredução , Macrófagos , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Adv Mater ; 34(47): e2206861, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36125843

RESUMO

Construction of multifunctional nanoplatforms to elevate chemotherapeutic efficacy and induce long-term antitumor immunity still remains to be an extreme challenge. Herein, the design of an advanced redox-responsive nanomedicine formulation based on phosphorus dendrimer-copper(II) complexes (1G3 -Cu)- and toyocamycin (Toy)-loaded polymeric nanoparticles (GCT NPs) coated with cancer cell membranes (CM) are reported. The designed GCT@CM NPs with a size of 210 nm are stable under physiological conditions but are rapidly dissociated in the reductive tumor microenvironment to deplete glutathione and release drugs. The co-loading of 1G3 -Cu and Toy within the NPs causes significant tumor cell apoptosis and immunogenic cell death through 1G3 -Cu-induced mitochondrial dysfunction and Toy-mediated amplification of endoplasmic reticulum stress, respectively, thus effectively suppressing tumor growth, promoting dendritic cell maturation, and increasing tumor-infiltrating cytotoxic T lymphocytes. Likewise, the coated CM and the loaded 1G3 -Cu render the GCT@CM NPs with homotypic targeting and T1 -weighted magnetic resonance imaging of tumors, respectively. With the assistance of programmed cell death ligand 1 antibody, the GCT@CM NP-mediated chemotherapy can significantly potentiate tumor immunotherapy for effective inhibition of tumor recurrence and metastasis. The developed GCT@CM NPs hold a great potential for chemotherapy-potentiated immunotherapy of different tumor types through different mechanisms or synergies.


Assuntos
Nanopartículas , Neoplasias , Humanos , Estresse do Retículo Endoplasmático , Biomimética , Polímeros , Imunoterapia , Neoplasias/tratamento farmacológico , Mitocôndrias , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA