Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Oral Sci ; 16(1): 21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424060

RESUMO

Ameloblastoma is a benign tumor characterized by locally invasive phenotypes, leading to facial bone destruction and a high recurrence rate. However, the mechanisms governing tumor initiation and recurrence are poorly understood. Here, we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution. Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response (IR), bone remodeling (BR), tooth development (TD), epithelial development (ED), and cell cycle (CC) signatures. Of note, we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence, which was dominated by the EZH2-mediated program. Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids. These data described the tumor subpopulation and clarified the identity, function, and regulatory mechanism of CC ameloblastoma cells, providing a potential therapeutic target for ameloblastoma.


Assuntos
Ameloblastoma , Humanos , Ameloblastoma/genética , Ameloblastoma/patologia , Recidiva Local de Neoplasia , Fenótipo , Transformação Celular Neoplásica , Perfilação da Expressão Gênica
2.
Stem Cell Rev Rep ; 15(5): 664-679, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31154619

RESUMO

Gelatin methacrylate (GelMA)-based hydrogels are gaining a great deal of attention as potentially implantable materials in tissue engineering applications because of their biofunctionality and mechanical tenability. Since different natural tissues respond differently to mechanical stresses, an ideal implanted material would closely match the mechanical properties of the target tissue. In this regard, applications employing GelMA hydrogels are currently limited by the low mechanical strength and biocompatibility of GelMA. Therefore, this review focuses on modifications made to GelMA hydrogels to make them more suitable for tissue engineering applications. A large number of reports detail rational synthetic processes for GelMA or describe the incorporation of various biomaterials into GelMA hydrogels to tune their various properties, e.g., physical strength, chemical properties, conductivity, and porosity, and to promote cell loading and accelerate tissue repair. A novel strategy for repairing tissue injuries, based on the transplantation of cell-loaded GelMA scaffolds, is examined and its advantages and challenges are summarized. GelMA-cell combinations play a critical and pioneering role in this process and could potentially accelerate the development of clinically relevant applications.


Assuntos
Materiais Biocompatíveis/química , Transplante de Células/métodos , Gelatina/química , Hidrogéis/química , Metacrilatos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos , Hidrogéis/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA