Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecotoxicol Environ Saf ; 198: 110677, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32371214

RESUMO

The volatilization characteristics and risk evaluation of heavy metals (As, Cd, Co ,Cr, Cu, Ni, Pb, Zn, and Ti) during pyrolysis and combustion of rubber waste with or without molecular sieves (MS) were studied. The addition of MS during pyrolysis inhibited the volatilization of As and promoted the volatilization of Ni and Co, while during combustion it inhibited the volatilization of Pb, Zn and promoted the volatilization of Cu. For Cd, Cr, Ni, Zn and Ti, their volatilization rates during pyrolysis were significantly higher than those during combustion, whereas for As and Cu, the volatilization rates during pyrolysis were lower than those during combustion. Risk evaluation of gaseous heavy metals was exhibited based on the Potential Ecological Risk Index (RI) method. The potential ecological risk during combustion was generally lower than that during pyrolysis. The research results provide important information of heavy metals control during waste thermal treatment.


Assuntos
Metais Pesados/análise , Eliminação de Resíduos , China , Gases , Pirólise , Medição de Risco , Borracha , Volatilização
2.
Aquat Toxicol ; 267: 106813, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183774

RESUMO

Nanoplastics can interact with antibiotics, altering their bioavailability and the ensuing toxicity in marine organisms. It is reported that plain polystyrene (PS) nanoplastics decrease the bioavailability and adverse effects of sulfamethazine (SMZ) on the gut microbiota in Oryzias melastigma. However, the influence of surface functional groups on the combined effects with SMZ remains largely unknown. In this study, adult O. melastigma were fed diet amended with 4.62 mg/g SMZ and 3.65 mg/g nanoplastics (i.e., plain PS, PS-COOH and PS-NH2) for 30 days (F0-E), followed by a depuration period of 21 days (F0-D). In addition, the eggs produced on the last day of exposure were cultured under standard protocols without further exposure for 2 months (F1 fish). The results showed that the alpha diversity or the bacterial community of gut microbiota did not differ among the SMZ + PS, SMZ + PS-COOH, and SMZ + PS-NH2 groups in the F0-E and F1 fish. Interestingly, during the depuration, a clear recovery of gut microbiota (e.g., increases in the alpha diversity, beneficial bacteria abundances and network complexity) was found in the SMZ + PS group, but not for the SMZ + PS-COOH and SMZ + PS-NH2 groups, indicating that PS-COOH and PS-NH2 could prolong the toxic effect of SMZ and hinder the recovery of gut microbiota. Compared to plain PS, lower egestion rates of PS-COOH and PS-NH2 were observed in O. melastigma. In addition, under the simulated fish digest conditions, the SMZ-loaded PS-NH2 was found to desorb more SMZ than the loaded PS and PS-COOH. These results suggested that the surface -COOH and -NH2 groups on PS could influence their egestion efficiency and the adsorption/desorption behavior with SMZ, resulting in a long-lasting SMZ stress in the gut during the depuration phase. Our findings highlight the complexity of the carrier effect and ecological risk of surface-charged nanoplastics and the interactions between nanoplastics and antibiotics in natural environments.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Sulfametazina/toxicidade , Microplásticos , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Antibacterianos/toxicidade
3.
Aquat Toxicol ; 259: 106522, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37061421

RESUMO

Microplastics and the antibiotic sulfamethazine (SMZ) are two prevalent pollutants in regions with high human activity, particularly in coastal marine environments. In this study, the individual and joint effects of microplastics (i.e., the bio-based microplastics polylactic acid (PLA), the petroleum-based microplastics polyethylene terephthalate (PET), and the petroleum-based microplastics polystyrene (PS) at 0.5 and 5 mg/g) and sulfamethazine (SMZ, at 5 mg/g) on the gut microbiota of marine medaka (Oryzias melastigma) via dietary route were investigated. For the individual microplastics exposure, two petroleum-based microplastics PET and PS significantly decreased the alpha diversity and the complexity of co-occurrence networks of gut microbiota. Differently, the adverse effects caused by the bio-based microplastic PLA were more modest, suggesting that PLA was less hazardous than PET and PS. For the combined exposure, SMZ alone dramatically impaired the homeostasis of gut microbiota by decreasing the alpha diversity and the complexity of co-occurrence networks, while the presence of PLA or PET alleviated these adverse effects caused by SMZ. Interestingly, such an alleviation effect was not observed in the SMZ + PS groups, suggesting that different types of microplastics might exhibit distinct joint effects with SMZ. Our findings contribute to a better understanding of the ecological risk of different types of microplastics to marine ecosystems, especially in a scenario of combined pollution with antibiotics.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos/toxicidade , Sulfametazina , Polietilenotereftalatos/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Antibacterianos
4.
Sci Total Environ ; 893: 164841, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321489

RESUMO

The persistence of antibiotics and nanoplastics in aquatic environment poses a great threat to aquatic organisms. In our previous study, significant decreases of bacterial richness and changes of bacterial communities in the Oryzias melastigma gut after sulfamethazine (SMZ) and polystyrene nanoplastics (PS) exposure were observed. Here, the O. melastigma dietary exposed to SMZ (0.5 mg/g, LSMZ; 5 mg/g, HSMZ), PS (5 mg/g, PS) or PS + HSMZ were depurated for 21 days to assess the extent of which these effects were reversible. Our results revealed that most diversity indexes of bacterial microbiota in the O. melastigma gut from the treatment groups were insignificantly different from the control, suggesting a large recovery of bacterial richness. Although the sequence abundances of a few genera remained significantly changed, the proportion of dominant genus was recovered. Exposure to SMZ affected the complexity of the bacterial networks, and the cooperation and exchange events of positively associated bacteria were enhanced during this period. After depuration, increases in the complexity of networks and intense competitions among bacteria were observed, which was beneficial for the robustness of networks. However, the gut bacterial microbiota was less stable, and several functional pathways were dysregulated, relative to the control. In addition, higher occurrence of pathogenic bacteria was found in the PS + HSMZ group relative to the signal pollutant group after depuration, indicating a greater hazard for the mixture of PS and SMZ. Taken together, this study contributes to a better understanding of the recovery of bacterial microbiota in fish gut after individual and combined exposure to nanoplastics and antibiotics.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Sulfametazina/toxicidade , Oryzias/metabolismo , Microplásticos/metabolismo , Poluentes Químicos da Água/análise , Antibacterianos/toxicidade , Antibacterianos/metabolismo
5.
J Hazard Mater ; 423(Pt A): 127003, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34474367

RESUMO

The individual and combined toxicity of antibiotics and nanoplastics in marine organisms has received increasing attention. However, many studies have been mostly focused on the impacts on the directly exposed generation (F0). In this study, intergenerational effects of sulfamethazine (SMZ) and nanoplastic fragments (polystyrene, PS) on the growth and the gut microbiota of marine medaka (Oryzias melastigma) were investigated. The results showed that parental exposure to dietary SMZ (4.62 mg/g) alone and PS (3.45 mg/g) alone for 30 days decreased the body weight (by 13.41% and 34.33%, respectively) and altered the composition of gut microbiota in F1 males (two months after hatching). Interestingly, parental exposure to the mixture of SMZ and PS caused a more modest decrease in the body weight of F1 males than the PS alone (15.60% vs 34.33%). The hepatic igf1 level and the relative abundance of the host energy metabolism related phylum Bacteroidetes for the SMZ + PS group were significantly higher than those for the PS group (igf1, increased by 97.1%; Bacteroidetes, 2.876% vs 0.375%), suggesting that the parentally derived mixture of SMZ and PS might influence the first microbial colonization of gut in a different way to the PS alone. This study contributes to a better understanding of the long-term risk of antibiotics and nanoplastics to marine organisms.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Masculino , Microplásticos , Sulfametazina/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Bioresour Technol ; 314: 123676, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32599525

RESUMO

The co-hydrothermal carbonization (co-HTC) of water hyacinth (WH) and polyvinyl chloride (PVC) was investigated and the response surface methodology, which could deduce the interactions among process parameters and establish reliable mathematical models forecasting the behavior of output variables, was implemented to optimize process parameters, including reaction temperature (200-260 °C), residence time (30-90 min) and WH/PVC mixing ratios (0.5-2). Statistical analysis revealed that reaction temperature was the predominant parameter affecting hydrochar dechlorination efficiency, yield, calorific value, energetic recovery efficiency and electricity consumption. The predicted condition of 200-30-0.5 could simultaneously acquire the optimal energetic recovery efficiency and electricity consumption for producing unit HHV, corresponding to 94.96% and 13.81. The characterization results identified that hydrochar could harvest lower H/C and O/C ratios as well as superior inorganics removal ability. Overall, the co-HTC of WH and PVC could definitely be a promising alternative to bridge the gap from solid wastes to renewable fuels.


Assuntos
Eichhornia , Cloreto de Polivinila , Carbono , Eletricidade , Temperatura
7.
Bioresour Technol ; 301: 122763, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31972403

RESUMO

The improvement of dechlorination efficiency remains an important challenge during co-hydrothermal carbonization (co-HTC) of polyvinyl chloride (PVC). In this work, co-HTC of biomass and PVC at different mixing ratios (30%-70%) and feed-water pH (3-11) was proposed to further improve the dechlorination efficiency. In terms of water solvent, the dechlorination efficiency of co-HTC process (87.83%-93.63%) was higher than that of individual HTC of polyvinyl chloride (87.44%). In case of organic acid/alkali solvents, the dechlorination efficiency further increased to 95.20% at pH = 5. Particularly, the hydrochars derived from co-HTC showed high fuel ratio (0.71-0.99) and their higher heating value reached approximately 29.16-32.83 MJ/kg. The TGA results showed that the combustion behaviors of hydrochars derived from co-HTC got better compared with that of hydrochar derived from PVC. Therefore, co-HTC can realize sustainable utilization of PVC towards clean solid fuels. This work also sheds light on the potential of organic acid in dechlorination treatment.


Assuntos
Cloreto de Polivinila , Zea mays , Biomassa , Carbono , Temperatura
8.
Sci Rep ; 7(1): 359, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28337023

RESUMO

A chitosan-based microsphere delivery system has been fabricated for controlled release of alendronate (AL). The present study aimed to incorporate the chitosan/hydroxyapatite microspheres-loaded with AL (CH/nHA-AL) into poly(L-lactic acid)/nanohydroxyapatite (PLLA/nHA) matrix to prepare a novel microspheres-scaffold hybrid system (CM-ALs) for drug delivery and bone tissue engineering application. The characteristics of CM-ALs scaffolds containing 10% and 20% CH/nHA-AL were evaluated in vitro, including surface morphology and porosity, mechanical properties, drug release, degradation, and osteogenic differentiation. The in vivo bone repair for large segmental radius defects (1.5 cm) in a rabbit model was evaluated by radiography and histology. In vitro study showed more sustained drug release of CM-AL-containing scaffolds than these of CM/nHA-AL and PLLA/nHA/AL scaffolds, and the mechanical and degradation properties of CM-ALs (10%) scaffolds were comparable to that of PLLA/nHA control. The osteogenic differentiation of adipose-derived stem cells (ASCs) was significantly enhanced as indicated by increased alkaline phosphates (ALP) activity and calcium deposition. In vivo study further showed better performance of CM-ALs (10%) scaffolds with complete repair of large-sized bone defects within 8 weeks. A microspheres-scaffold-based release system containing AL-encapsulated chitosan microspheres was successfully fabricated in this study. Our results suggested the promising application of CM-ALs (10%) scaffolds for drug delivery and bone tissue engineering.


Assuntos
Alendronato/administração & dosagem , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Sistemas de Liberação de Medicamentos/métodos , Alicerces Teciduais , Alendronato/farmacocinética , Animais , Células Cultivadas , Quitosana/química , Durapatita/química , Técnicas In Vitro , Ácido Láctico/química , Microesferas , Osteogênese/efeitos dos fármacos , Coelhos , Engenharia Tecidual/métodos
9.
Int J Nanomedicine ; 10: 3815-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082632

RESUMO

A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration.


Assuntos
Regeneração Óssea , Ácido Láctico/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Ácido Poliglicólico/química , Alicerces Teciduais/química , Proteína Morfogenética Óssea 2/química , Diferenciação Celular , Proliferação de Células , Durapatita/química , Vidro/química , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA