Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 36(7): 640-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25639941

RESUMO

The applications of conjugated polyelectrolytes in biosensing and bioimaging have attracted more and more research interests due to their excellent photophysical properties. In this work, a new series of conjugated polyelectrolytes containing long-lived phosphorescent Ir(III) complexes is designed and synthesized, which can be used for ratiometric and lifetime-based sensing of heparin utilizing the electrostatic interaction between cationic polymers and anionic heparin. By changing the ligand structures of Ir(III) complexes, the sensing performances of phosphorescent-conjugated polyelectrolytes (PCPEs) are optimized. In addition, the application of PCPEs in cellular imaging is carried out. These polymers can be applied for specific staining of cell membrane. Importantly, utilizing the long emission lifetime of phosphorescent signal of Ir(III) complexes, time-gated luminescent imaging is carried out, which can eliminate the short-lived background fluorescence interferences from the environment or biological samples.


Assuntos
Células/química , Fluorenos/química , Heparina/química , Irídio/química , Polímeros/química , Linhagem Celular , Fluorescência , Humanos , Microscopia Confocal , Polímeros/síntese química
2.
Sci Rep ; 5: 16420, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26552859

RESUMO

It is of paramount importance to develop new probes that can selectively, sensitively, accurately and rapidly detect fluoride in aqueous media and biological systems, because F(-) is found to be closely related to many health and environmental concerns. Herein, a dual-emissive conjugated polyelectrolyte P1 containing phosphorescent iridium(III) complex was designed and synthesized, which can form ultrasmall polymer dots (Pdots) in aqueous media. The F(-)-responsive tert-butyldiphenylsilyl moiety was introduced into iridium(III) complex as the signaling unit for sensing F(-) with the quenched phosphorescence. Thus, the dual-emissive Pdots can rapidly and accurately detect F(-) in aqueous media and live cells as a ratiometric probe by measuring the change in the ratio of the F(-)-sensitive red phosphorescence from iridium(III) complex to the F(-)-insensitive blue fluorescence from polyfluorene. Moreover, the interaction of Pdots with F(-) also changes its emission lifetime, and the lifetime-based detection of F(-) in live cells has been realized through photoluminescence lifetime imaging microscopy for the first time. Both the ratiometric luminescence and lifetime imaging have been demonstrated to be resistant to external influences, such as the probe's concentration and excitation power. This study provides a new perspective for the design of promising Pdots-based probes for biological applications.


Assuntos
Fluoretos/química , Polímeros/química , Água/química , Células HeLa , Humanos , Irídio/química , Luminescência , Microscopia Confocal , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA