Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 86(8): 1904-1914, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36315084

RESUMO

Urine is a major source of reclaimed water and fertilizer. Urine treatment involves two key processes: the recovery of nutrients and the rejection of trace organic compounds (TOrCs). In this study, we investigated the rejection of TOrCs and the recovery of nutrients in human urine using a seawater-driven forward osmosis and membrane distillation (FO-MD) hybrid system. Three 24 h experiments were conducted at draw solution temperatures of 30, 40, and 50 °C. The average rejection rates of cations, anions, and dissolved organic carbon were more than 93.7% and 79.5% in the FO-MD system and FO side, respectively. Ten types of TOrCs were detected in the feed solution, whereas none were detected in the product water, indicating that the TOrCs were completely rejected. The precipitates, i.e., the recovered nutrients in the FO side, were extremely close to magnesium ammonium phosphate (struvite, MgNH4PO4·6H2O), according to their electron microscopic images, elemental composition, and X-ray diffraction spectra, and it was estimated that approximately 85% of the nutrients in the feed solution were recovered. The rejection and recovery efficiencies were unaffected by the draw solution temperature. These results indicate the potential for the sustainable use of FO-MD-based treatments for human urine.


Assuntos
Destilação , Purificação da Água , Humanos , Destilação/métodos , Purificação da Água/métodos , Membranas Artificiais , Osmose , Compostos Orgânicos , Águas Residuárias , Água , Nutrientes
2.
Water Sci Technol ; 75(11-12): 2622-2630, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28617282

RESUMO

In this study, we investigate the rejection of Hg, Cd, and Pb and the effect of coexisting metals on Hg removal through forward osmosis (FO) and membrane distillation (MD) in order to establish a more effective water treatment process. The results of our laboratory experiment indicate that more than 97% of the rejection for each metal is achieved through the FO system, and this rejection is the highest among previous studies using membrane filtrations. Moreover, we examine the matrix effect of the coexisting Cd and Pb on the rejection of Hg in the FO system. Hg2+ rejection increases with increase in the concentration of the coexisting metals. Furthermore, we study the effect of the Hg concentration and the water temperature on rejection of Hg2+. Indeed, the rejection of Hg2+ is achieved above 95% under any condition. However, approximately 1-10 ppb Hg from the feed solution remains in the draw solution due to permeation. Therefore, we use a FO-MD hybrid system. Approximately 100% rejection of Hg2+ and a stable water flux are achieved. Thus, the FO-MD hybrid system is considered an important alternative to previous studies using membrane filtration for heavy metals removal.


Assuntos
Destilação/métodos , Osmose , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cádmio/química , Chumbo/química , Membranas Artificiais , Mercúrio/química
3.
ACS Nano ; 18(3): 2261-2278, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207332

RESUMO

Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.


Assuntos
Lipossomos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Receptores de Antígenos Quiméricos , Sepse , Infecções Estafilocócicas , Animais , Camundongos , Receptores de Antígenos Quiméricos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , RNA Mensageiro , Antibacterianos/farmacologia , Macrófagos , Sepse/tratamento farmacológico , Lipídeos/farmacologia
4.
J Biomed Mater Res B Appl Biomater ; 111(7): 1407-1418, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36930047

RESUMO

Poly-γ-glutamic acid (PGA) is a naturally degradable hydrophilic linear microbial polymer with moisturizing, immunogenic, cross-linking, and hydrogel water absorption properties similar to hyaluronic acid, a biomaterial that is commonly used as a dermal filler. To explore the development feasibility of cross-linked PGA as a novel dermal filler, we studied the local skin response to PGA fillers and the effect of various cross-linking preparations on the average longevity of dermal injection. Injection site inflammation and the formation of collagen and elastin were also determined. PGA hydrogel particles prepared using 28% PGA and 10% 1,4-butanediol diglycidyl ether showed optimal filler properties, resistance to moist heat sterilization, and an average filling longevity of 94.7 ± 61.6 days in the dermis of rabbit ears. Local redness and swelling due to filler injection recovered within 14.2 ± 3.6 days. Local tissue necrosis or systemic allergic reactions were not observed, and local collagen formation was promoted. Preliminary results suggested that dermal injection of cross-linked PGA particles appeared safe and effective, suggesting that cross-linked PGA particles could be developed as a new hydrogel dermal filler.


Assuntos
Preenchedores Dérmicos , Hidrogéis , Animais , Coelhos , Materiais Biocompatíveis , Butileno Glicóis , Excipientes , Ácido Glutâmico , Ácido Hialurônico , Hidrogéis/farmacologia
5.
Biomed Mater ; 19(1)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37972551

RESUMO

A multifunctional hydrogel dressing with hemostatic, antibacterial, and reactive oxygen species (ROS)-removing properties is highly desirable for the clinical treatment of open wounds. Although many wound dressings have been prepared, the modification of polymers is often involved in the preparation process, and the uncertainty of biological safety and stability of modified polymers hinders the clinical application of products. In this study, inspired by the composition and crosslinking pattern of extracellular matrix (ECM), a deeply ECM-mimicking multifunctional hydrogel dressing is created. Tannic acid (TA) and poly-ϵ-lysine (EPL) are added into a gelatin/hyaluronic acid (Gel/HA) matrix, and a stable hydrogel is formed due to the formation of the triple helix bundles of gelatin and hydrogen bonds between polymers. The introduction of TA and EPL endows the ECM-mimicking hydrogel with stable rheological properties, as well as antibacterial and hemostatic functions. The as-produced hydrogels have suitable swelling ratio, enzyme degradability, and good biocompatibility. In addition, it also shows a significant ability to eliminate ROS, which is confirmed by the elimination of 2,2-diphenyl-1-picrylhydrazyl free radical. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed ECM-mimicking Gel/HA hydrogels have a prominent effect on ECM formation and promotion of wound closure. Taken together, these findings suggest that the multifunctional hydrogels deeply mimicking the ECM are promising candidates for the clinical treatment of open wounds.


Assuntos
Gelatina , Hemostáticos , Animais , Camundongos , Hidrogéis , Ácido Hialurônico , Espécies Reativas de Oxigênio , Antibacterianos , Matriz Extracelular , Lisina , Polímeros , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA