Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Nanobiotechnology ; 22(1): 460, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090717

RESUMO

BACKGROUND: Nanoplastics (NPs) are emerging pollutants that pose risks to living organisms. Recent findings have unveiled the reproductive harm caused by polystyrene nanoparticles (PS-NPs) in female animals, yet the intricate mechanism remains incompletely understood. Under this research, we investigated whether sustained exposure to PS-NPs at certain concentrations in vivo can enter oocytes through the zona pellucida or through other routes that affect female reproduction. RESULTS: We show that PS-NPs disrupted ovarian functions and decreased oocyte quality, which may be a contributing factor to lower female fertility in mice. RNA sequencing of mouse ovaries illustrated that the PI3K-AKT signaling pathway emerged as the predominant environmental information processing pathway responding to PS-NPs. Western blotting results of ovaries in vivo and cells in vitro showed that PS-NPs deactivated PI3K-AKT signaling pathway by down-regulating the expression of PI3K and reducing AKT phosphorylation at the protein level, PI3K-AKT signaling pathway which was accompanied by the activation of autophagy and apoptosis and the disruption of steroidogenesis in granulosa cells. Since PS-NPs penetrate granulosa cells but not oocytes, we examined whether PS-NPs indirectly affect oocyte quality through granulosa cells using a granulosa cell-oocyte coculture system. Preincubation of granulosa cells with PS-NPs causes granulosa cell dysfunction, resulting in a decrease in the quality of the cocultured oocytes that can be reversed by the addition of 17ß-estradiol. CONCLUSIONS: This study provides findings on how PS-NPs impact ovarian function and include transcriptome sequencing analysis of ovarian tissue. The study demonstrates that PS-NPs impair oocyte quality by altering the functioning of ovarian granulosa cells. Therefore, it is necessary to focus on the research on the effects of PS-NPs on female reproduction and the related methods that may mitigate their toxicity.


Assuntos
Células da Granulosa , Nanopartículas , Oócitos , Poliestirenos , Transdução de Sinais , Animais , Feminino , Camundongos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Nanopartículas/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliestirenos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 278: 116439, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728945

RESUMO

Nanoplastic contamination has been of intense concern by virtue of the potential threat to human and ecosystem health. Animal experiments have indicated that exposure to nanoplastics (NPs) can deposit in the liver and contribute to hepatic injury. To explore the mechanisms of hepatotoxicity induced by polystyrene-NPs (PS-NPs), mice and AML-12 hepatocytes were exposed to different dosages of 20 nm PS-NPs in this study. The results illustrated that in vitro and in vivo exposure to PS-NPs triggered excessive production of reactive oxygen species and repressed nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway and its downstream antioxidase expression, thus leading to hepatic oxidative stress. Moreover, PS-NPs elevated the levels of NLRP3, IL-1ß and caspase-1 expression, along with an activation of NF-κB, suggesting that PS-NPs induced hepatocellular inflammatory injury. Nevertheless, the activaton of NRF2 signaling by tert-butylhydroquinone mitigated PS-NPs-caused oxidative stress and inflammation, and inbihited NLRP3 and caspase-1 expression. Conversely, the rescuing effect of NRF2 signal activation was dramatically supressed by treatment with NRF2 inhibitor brusatol. In summary, our results demonstrated that NRF2-NLRP3 pathway is involved in PS-NPs-aroused hepatotoxicity, and the activation of NRF2 signaling can protect against PS-NPs-evoked liver injury. These results provide novel insights into the hepatotoxicity elicited by NPs exposure.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Poliestirenos , Transdução de Sinais , Animais , Masculino , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microplásticos/toxicidade , Nanopartículas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Ecotoxicol Environ Saf ; 255: 114796, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948006

RESUMO

Plastic particle pollution poses an emerging threat to ecological and human health. Laboratory animal studies have illustrated that nano-sized plastics can accumulate in the testis and cause testosterone deficiency and spermatogenic impairment. In this study, TM3 mouse Leydig cells were in vitro exposed to polystyrene nanoparticles (PS-NPs, size 20 nm) at dosages of 50, 100 and 150 µg/mL to investigate their cytotoxicity. Our results demonstrated that PS-NPs can be internalized into TM3 Leydig cells and led to a concentration-dependent decline in cell viability. Furthermore, PS-NPs stimulation amplified ROS generation and initiated cellular oxidative stress and apoptosis. Moreover, PS-NPs treatment affected the mitochondrial DNA copy number and collapsed the mitochondrial membrane potential, accompanied by a disrupted energy metabolism. The cells exposed to PS-NPs also displayed a down-regulated expression of steroidogenesis-related genes StAR, P450scc and 17ß-HSD, along with a decrease in testosterone secretion. In addition, treatment with PS-NPs destructed plasma membrane integrity, as presented by increase in lactate dehydrogenase release and depolarization of cell membrane potential. In summary, these data indicated that exposure to PS-NPs in vitro produced cytotoxic effect on Leydig cells by inducing oxidative injury, mitochondrial impairment, apoptosis, and cytomembrane destruction. Our results provide new insights into male reproductive toxicity caused by NPs.


Assuntos
Células Intersticiais do Testículo , Nanopartículas , Camundongos , Animais , Masculino , Humanos , Células Intersticiais do Testículo/metabolismo , Microplásticos/metabolismo , Poliestirenos/toxicidade , Plásticos/metabolismo , Nanopartículas/toxicidade , Nanopartículas/metabolismo , Testosterona/metabolismo
4.
Environ Sci Technol ; 50(6): 3111-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26862886

RESUMO

The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics.


Assuntos
Celulose/química , Cromo/química , Resíduos Industriais , Metalurgia/métodos , Biomassa , Oxirredução , Espectroscopia por Absorção de Raios X
5.
Environ Pollut ; 346: 123623, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387545

RESUMO

Microplastics (MPs), pollutants detected at high frequency in the environment, can be served as carriers of many kinds of pollutants and have typical characteristics of environmental persistence and bioaccumulation. The potential risks of MPs ecological environment and health have been widely concerned by scholars and engineering practitioners. Previous reviews mostly focused on the pollution characteristics and ecological toxicity of MPs, but there were few reviews on MPs analysis methods, aging mechanisms and removal strategies. To address this issue, this review first summarizes the contamination characteristics of MPs in different environmental media, and then focuses on analyzing the detection methods and analyzing the aging mechanisms of MPs, which include physical aging and chemical aging. Further, the ecotoxicity of MPs to different organisms and the associated enhanced removal strategies are outlined. Finally, some unresolved research questions related to MPs are prospected. This review focuses on the ageing and ecotoxic behaviour of MPs and provides some theoretical references for the potential environmental risks of MPs and their deep control.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/análise , Plásticos/toxicidade , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise
6.
Sci Total Environ ; 859(Pt 1): 160316, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36403846

RESUMO

Florfenicol (FF), an emerging pollutant antibiotic that is difficult to biodegrade, inevitably enters sewage treatment facilities with high level. To date, however, the performance and related mechanism of FF on enhanced biological phosphorus removal (EBPR) have not been reported. In order to fill this gap, this work investigated the potential impacts of FF on EBPR and revealed the relevant mechanisms. The effect of FF on EBPR was dose-dependent, that was, low dose had no effect on EBPR, while high FF concentration inhibited EBPR. Mechanism investigation showed that FF had no effect on anaerobic phosphate release, but reduced oxic phosphorus uptake. Three-dimensional Excitation-emission Matrix fluorescence spectroscopy and X-ray photoelectron spectroscopy analysis showed that FF affected the structure and components of activated sludge extracellular polymers (EPS). High content of FF stimulated sludge to secrete more EPS. High level of FF reduced the relative abundance of microorganisms responsible for biological phosphorus removal. Microbiological community structure analysis indicated 2.0 mg FF/L increased the relative abundance of Candidatus_Competibacter and Terrimonas from 9.22 % and 12.49 % to 19.00 % and 16.28 %, respectively, but significantly reduced the relative abundance of Chinophagaceae from 11.32 % to 0.38 %, compared with the blank.


Assuntos
Poluentes Ambientais , Fósforo , Fósforo/análise , Poluentes Ambientais/análise , Esgotos/microbiologia , Fosfatos , Polímeros , Reatores Biológicos
7.
Food Chem Toxicol ; 160: 112803, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990788

RESUMO

Nanoplastics have raised considerable concerns since their ubiquity in the environment and potential hazard to health. It has been proven that polystyrene nanoparticles (PS-NPs) can be maternally transferred to the offspring. In this study, mice were exposed gestationally and lactationally to PS-NPs (size 100 nm) at different doses (0.1, 1 and 10 mg/L) to investigate the trans-generational poisonousness. Our data illustrated that maternal PS-NPs exposure in pregnancy and lactation resulted in a decline in birth and postnatal body weight in offspring mice. Furthermore, high-dose PS-NPs reduced liver weight, triggered oxidative stress, caused inflammatory cell infiltration, up-regulated proinflammatory cytokine expression, and disturbed glycometabolism in the liver of male offspring mice. In addition, pre- and postnatal PS-NPs exposure diminished testis weight, disrupted seminiferous epithelium and decreased sperm count in mouse offspring. Moreover, PS-NPs induced testicular oxidative injury, as presented by increased malondialdehyde generation and altered superoxide dismutase and catalase activities in the testis of offspring mice. These findings declared that maternal exposure to PS-NPs in pregnancy and lactation can cause hepatic and testicular toxicity in male mouse pups, which put forward new understanding into the detrimental effects of nanoplastics on mammalian offspring.


Assuntos
Fígado/efeitos dos fármacos , Exposição Materna/efeitos adversos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/etiologia , Testículo/efeitos dos fármacos , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Recém-Nascido , Lactação , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos , Nanopartículas/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
8.
Biomed Res Int ; 2018: 5214369, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850531

RESUMO

The anaerobic fermentation of crop straw and animal wastes is increasingly used for the biogas and green energy generation, as well as reduction of the environmental pollution. The anaerobic cofermentation of corn stalks inoculated by cow dung was found to achieve higher biogas production and cellulose biodegradation. In this study, the effect of mixing corn stalks with cow dung at five different fermentation stages (0, 7, 15, 23, and 31 days of the total fermentation cycle of 60 days) on the further cofermentation process was explored, in order to optimize the corn straw utilization rate and biogas production capacity. In addition, the straw microstructure evolution was investigated by the SEM and XRD methods to identify the optimal conditions for the straw biodegradation process enhancement. The five test groups exhibited nearly identical total biogas productivity values but strongly differed by daily biogas yields (the maximal biogas generation rate being 524.3 ml/d). Based on the degradation characteristics of total solids (TS), volatile solids (VS), and lignocellulose, groups #1 and #3 (0 and 15 days) had the most significant degradation rates of VS (43.73%) and TS (42.07%), respectively, while the largest degradation rates of cellulose (62.70%) and hemicellulose (50.49%) were observed in group #4 (23 days) and group #1 (0 days), respectively. The SEM analysis revealed strong microstructural changes in corn stalks after fermentation manifested by multiple cracks and striations, while the XRD results proved the decrease in peak intensity of cellulose 〈002〉 crystal surface and the reduced crystallinity after cofermentation. The results of this study are assumed to be quite instrumental to the further optimization of the corn stalk anaerobic digestion by inoculation with digested manure for lignocellulose degradation enhancement and biogas productivity improvement.


Assuntos
Biodegradação Ambiental , Biocombustíveis , Lignina , Esterco , Zea mays/química , Anaerobiose , Animais , Bovinos , Fermentação , Lignina/análise , Lignina/química , Lignina/metabolismo , Difração de Raios X
9.
J Environ Sci (China) ; 18(5): 989-94, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17278760

RESUMO

Abstract: Few studies have dealt on the evaluation of volatilization and decomposition reactions of dioxins from sediment by oxygen free pyrolysis. In this study, the performance of pyrolysis on the removal of dioxins from sediment was investigated. Dioxin concentrations of the raw sediment and the solid residues after pyrolysis were analyzed at different conditions. Results showed a removal efficiency of 99.9999% for total dioxins at 800 degrees C and retention time of 30 min. All the polychlorinated dibenzo-furans (PCDFs) have been removed and were not formed in the solid residues at the retention time range of 30-90 min at 800 degrees C. Close to 100% removal of polychlorinated dibenzo-p-dioxins (PCDDs) was also achieved. Only trace PCDDs were detected in the solid yields at a retention time of 60 min. The highest removal efficiency of polychlorinated biphenyls (PCBs) was more than 99.9994% at a retention time of 30 min. During cooling period following pyrolysis, however, the concentration of total dioxins in solid residues increased 130 times as compared to that of the raw sediment under air atmosphere. This confirmed that some complex reactions do occur to form PCDD/Fs and PCBs from 800 to 400 degrees C in the presence of oxygen. Oxygen-free atmosphere therefore can prevent formation of dioxin during thermal process thus generating clean solid residues.


Assuntos
Benzofuranos/isolamento & purificação , Oxigênio/química , Bifenilos Policlorados/isolamento & purificação , Dibenzodioxinas Policloradas/análogos & derivados , Polímeros/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Cromatografia Gasosa , Sedimentos Geológicos/química , Espectrometria de Massas , Dibenzodioxinas Policloradas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA