Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Anal Chem ; 96(25): 10322-10331, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801718

RESUMO

The chemical information on brain science provided by electrochemical sensors is critical for understanding brain chemistry during physiological and pathological processes. A major challenge is the selectivity of electrochemical sensors in vivo. This work developed a universal covalent grafting strategy of an aptamer on a carbon fiber microelectrode (CFE) for selective determination of dopamine in vivo. The universal strategy was proposed by oxidizing poly(tannic acid) (pTA) to form an oxidized state (pTAox) and then coupling a nucleophilic sulfhydryl molecule of the dopamine-binding mercapto-aptamer with the o-quinone moiety of pTAox based on click chemistry for the interfacial functionalization of the CFE surface. It was found that the universal strategy proposed could efficiently graft the aptamer on a glassy carbon electrode, which was verified by using electroactive 6-(ferrocenyl) hexanethiol as a redox reporter. The amperometric method using a fabricated aptasensor for the determination of dopamine was developed. The linear range of the aptasensor for the determination of dopamine was 0.2-20 µM with a sensitivity of 0.09 nA/µM and a limit of detection of 88 nM (S/N = 3). The developed method has high selectivity originating from the specific recognition of the aptamer in concert with the cation-selective action of pTA and could be easily applicable to probe dopamine dynamics in the brain. Furthermore, complex vesicle fusion modes were first observed at the animal level. This work demonstrated that the covalently grafted immobilization strategy proposed is promising and could be extended to the in vivo analysis of other neurochemicals.


Assuntos
Aptâmeros de Nucleotídeos , Fibra de Carbono , Dopamina , Microeletrodos , Dopamina/análise , Aptâmeros de Nucleotídeos/química , Fibra de Carbono/química , Animais , Técnicas Eletroquímicas/métodos , Carbono/química , Ratos , Técnicas Biossensoriais/métodos , Masculino , Oxirredução
2.
BMC Oral Health ; 24(1): 743, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937725

RESUMO

BACKGROUND: Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic tumor, commonly occurring in young adults and typically affecting the mandibular region. We report an exceptionally rare and highly atypical case of AFS in an elderly female patient originating from the maxillary bone. CASE PRESENTATION: A 66-year-old woman was admitted with a two-week history of a lump in her left upper molar. CT scans suggested a cyst in the maxillary bone. An incisional biopsy revealed a spindle cell neoplasm. MRI showed abnormalities in the left maxilla, indicating a possible tumorous lesion. The patient underwent a subtotal maxillectomy, wide tumor excision, intraoral epithelial flap transplantation, and dental extraction. Histology identified atypical tumor cells with visible mitotic figures. Immunohistochemistry showed negative for PCK and CD34 expression, but positive for Vimentin and SMA expression. The Ki-67 proliferation index ranged from 30 to 50%. These findings suggested a potentially malignant soft tissue tumor in the left maxilla, leaning towards a diagnosis of AFS. The patient received postoperative radiotherapy. There was no recurrence during the six-month follow-up. CONCLUSION: Based on repeated pathological evidence, we report a rare case of an elderly female with AFS originating from the maxillary bone. Surgery and postoperative radiotherapy resulted in a favorable outcome.


Assuntos
Neoplasias Maxilares , Humanos , Feminino , Idoso , Neoplasias Maxilares/patologia , Neoplasias Maxilares/cirurgia , Neoplasias Maxilares/diagnóstico por imagem , Tumores Odontogênicos/patologia , Tumores Odontogênicos/cirurgia , Tumores Odontogênicos/diagnóstico por imagem , Fibrossarcoma/patologia , Fibrossarcoma/cirurgia , Fibrossarcoma/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Vimentina/análise , Imageamento por Ressonância Magnética
3.
Environ Res ; 231(Pt 3): 116244, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245567

RESUMO

The production and use of organophosphate esters (OPEs) as substitutes for traditional halogenated flame retardants is increasing, resulting in greater global concern related to their ecological risks to marine environments. In this study, polychlorinated biphenyls (PCBs) and OPEs, representing traditional halogenated and emerging flame retardants, respectively, were studied in multiple environmental matrices in the Beibu Gulf, a typical semi-closed bay in the South China Sea. We investigated the differences in PCB and OPE distributions, sources, risks, and bioremediation potentials. Overall, the concentrations of emerging OPEs were much higher than those of PCBs in both seawater and sediment samples. Sediment samples from the inner bay and bay mouth areas (L sites) accumulated more PCBs, with penta- and hexa-CBs as major homologs. Chlorinated OPEs were prevalent in both seawater and sediment samples from the L sites, whereas tri-phenyl phosphate (TPHP) and tri-n-butyl phosphate (TNBP) were predominant at the outer bay (B sites) sediment samples. Source identification via principal component analysis, land use regression statistics, and δ13C analysis indicate that PCBs were mainly sourced from the atmospheric deposition of sugarcane and waste incineration, whereas sewage inputs, aquaculture, and shipping activity were identified as sources of OPE pollution in the Beibu Gulf. A half-year sediment anaerobic culturing experiment was performed for PCBs and OPEs, and the results only exhibited satisfactory dechlorination for PCBs. However, compared with the low ecological risks of PCBs to marine organisms, OPEs (particularly trichloroethyl phosphate (TCEP) and TPHP) exhibited low to medium threats to algae and crustaceans at most sites. Given their increasing usage, high ecological risks, and low bioremediation potential in enrichment cultures, pollution by emerging OPEs warrants close attention.


Assuntos
Retardadores de Chama , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Biodegradação Ambiental , Organofosfatos/análise , Fosfatos/análise , China , Ésteres/análise
4.
Ecotoxicol Environ Saf ; 196: 110536, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234585

RESUMO

Rivers are important routes for sea-bound microplastics. Thus, this study investigated the occurrences and distributions of microplastics and polychlorinated biphenyls (PCBs) in sediment samples from the Qiantang River (QR) and Hangzhou Bay (HZ) and analyzed the correlation between microplastics and PCBs. A total of 15 sampling sites were selected, including eight from the QR (i.e., four in the Tonglu area and four in the Fuyang area), two from the Andong salt marsh (ASM; located in a hydrodynamic turning point of the HZ), and five from HZ. The mean microplastic abundance was highest in the QR, followed by HZ and ASM, with 0.23 ± 0.06, 0.18 ± 0.05, and 0.15 ± 0.03 particles/g sediment, respectively. Cluster analysis demonstrated that fragments and fibers may have originated from domestic sewage inputs to the QR. Spatially, mean PCB concentrations from Tonglu, Fuyang, and HZ were 1.47 ± 0.10, 1.65 ± 0.10, and 1.65 ± 0.09 ng/g sediment, respectively, which were higher than that from the ASM (1.13 ± 0.09 ng/g sediment). The vertical distributions (0-5 cm, 5-10 cm, and 10-15 cm) of microplastics in the sediments at Tonglu and Fuyang decreased with increasing depth, which was opposite to the depth trend of PCB concentrations. Micro-Fourier transform infrared spectroscopy analysis suggested that polyethylene was typically the dominant polymer, accounting for 60 ± 0.08% of the total suspected plastic particles. Microbeads and films showed considerable correlations with both highly and lesser chlorinated PCBs. Overall, our findings highlight the need for routine monitoring of microplastics in China in addition to measures for controlling plastic pollution on a national scale. Further study should ascertain specific sources of microplastics and analyze their adsorption capacity to organic pollutants.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Microplásticos/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Baías , China , Rios/química
5.
Mikrochim Acta ; 187(1): 94, 2020 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31902014

RESUMO

Poly(3,4-ethylenedioxythiophene) (PEDOT) films were electrodeposited by cyclic voltammetry on a glassy carbon electrode (GCE) in aqueous solution. Three kinds of supporting electrolytes were used, viz. graphene oxide (GO), phosphate buffered saline (PBS), and GO in PBS, respectively. The surface morphology of the modified electrodes was characterized by scanning electron microscopy. The electrochemical performance of the modified electrodes was investigated by cyclic voltammetry and electrochemical impedance spectroscopy by using the hexacyanoferrate redox system. The results demonstrate that the PEDOT-GO/GCE, which was electropolymerized in aqueous solutions containing EDOT and GO, shows the best electrochemical activities compared with other modified electrodes. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were investigated by cyclic voltammetry. The PEDOT-GO/GCE exhibits enhanced electrocatalytic activities towards these important biomolecules. Under physiological pH conditions and in the mixed system of AA, DA and UA, the modified GCE exhibits the following figures of merit: (a) a linear voltammetric response in the concentration ranges of 100-1000 µM for AA, 6.0-200 µM for DA, and 40-240 µM for UA; (b) well separated oxidation peaks near 31, 213 and 342 mV (vs. saturated Ag/AgCl) for AA, DA and UA, respectively; and (c) detection of limits (at S/N = 3) of 20, 2.0 and 10 µM. The results demonstrate that GO, based on its relatively large number of anionic sites, can be used as the sole weak electrolyte and charge balance dopant for the preparation of functionally doped conducting polymers by electrodeposition. Graphical abstractSchematic representation of a nanostructure composed of hybrid conducting polymer PEDOT-GO nanocomposites, and its application to simultaneous determination of ascorbic acid, dopamine and uric acid.


Assuntos
Ácido Ascórbico/análise , Dopamina/análise , Técnicas Eletroquímicas/métodos , Ácido Úrico/análise , Compostos Bicíclicos Heterocíclicos com Pontes , Técnicas Eletroquímicas/normas , Eletrodos , Galvanoplastia/métodos , Ferrocianetos/química , Grafite , Oxirredução , Polímeros
6.
ScientificWorldJournal ; 2014: 615927, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254254

RESUMO

A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors.


Assuntos
Alumínio/química , Materiais de Construção/análise , Arquitetura de Instituições de Saúde , Fenômenos Mecânicos , Simulação por Computador , Análise de Elementos Finitos , Imageamento Tridimensional , Modelos Teóricos , Estresse Mecânico
7.
Water Environ Res ; 96(7): e11070, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005104

RESUMO

Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.


Assuntos
Microplásticos , Oceanos e Mares , Microplásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Plásticos
8.
J Hazard Mater ; 471: 134343, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640671

RESUMO

Microplastics are a growing concern in mangrove ecosystems; however, their effects on archaeal communities and related ecological processes remain unclear. We conducted in situ biofilm-enrichment experiments to investigate the ecological influence of polyethylene (PE) and polypropylene microplastics on archaeal communities in the sediments of mangrove ecosystems. The archaeal community present on microplastics was distinct from that of the surrounding sediments at an early stage but became increasingly similar over time. Bathyarchaeota, Thaumarchaeota, Euryarchaeota, and Asgardaeota were the most abundant phyla. Methanolobus, an archaeal biomarker, was enriched in PE biofilms, and significantly controlled by homogeneous selection in the plastisphere, indicating an increased potential risk of methane emission. The dominant archaeal assembly process in the sediments was deterministic (58.85%-70.47%), while that of the PE biofilm changed from stochastic to deterministic during the experiment. The network of PE plastispheres showed less complexity and competitive links, and higher modularity and stability than that of sediments. Functional prediction showed an increase in aerobic ammonia oxidation during the experiment, whereas methanogenesis and chemoheterotrophy were significantly higher in the plastisphere. This study provides novel insights into the impact of microplastic pollution on archaeal communities and their mediating ecological functions in mangrove ecosystems.


Assuntos
Archaea , Biofilmes , Sedimentos Geológicos , Microplásticos , Polietileno , Polipropilenos , Áreas Alagadas , Archaea/efeitos dos fármacos , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Microplásticos/toxicidade , Biofilmes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ecossistema
9.
RSC Adv ; 13(39): 27333-27358, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705984

RESUMO

It is well established that hydrogen peroxide (H2O2) is associated with the initiation and progression of many diseases. With the rapid development of nanotechnology, the diagnosis and treatment of those diseases could be realized through a variety of H2O2-responsive nanomaterials. In order to broaden the application prospects of H2O2-responsive nanomaterials and promote their development, understanding and summarizing the design and application fields of such materials has attracted much attention. This review provides a comprehensive summary of the types of H2O2-responsive nanomaterials including organic, inorganic and organic-inorganic hybrids in recent years, and focused on their specific design and applications. Based on the type of disease, such as tumors, bacteria, dental diseases, inflammation, cardiovascular diseases, bone injury and so on, key examples for above disease imaging diagnosis and therapy strategies are introduced. In addition, current challenges and the outlook of H2O2-responsive nanomaterials are also discussed. This review aims to stimulate the potential of H2O2-responsive nanomaterials and provide new application ideas for various functional nanomaterials related to H2O2.

10.
Adv Healthc Mater ; 12(2): e2201367, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36325652

RESUMO

Magnesium (Mg)-based alloys have been regarded as promising implants for future clinic orthopedics, however, how to endow them with good anti-corrosion and biofunctions still remains a great challenge, especially for complicated bone diseases. Herein, three transition metals (M = Mn, Fe, and Co)-containing layered double hydroxides (LDH) (LDH-Mn, LDH-Fe, and LDH-Co) with similar M content are prepared on Mg alloy via a novel two-step method, then systematic characterizations and comparisons are conducted in detail. Results showed that LDH-Mn exhibited the best corrosion resistance, LDH-Mn and LDH-Co possessed excellent photothermal and enzymatic activities, LDH-Fe revealed better cytocompatibility and antibacterial properties, while LDH-Co demonstrated high cytotoxicity. Based on these results, an optimized bilayer LDH coating enriched with Fe and Mn (LDH-MnFe) from top to bottom have been designed for further in vitro and in vivo analysis. The top Fe-riched layer provided biocompatibility and antibacterial properties, while the bottom Mn-riced layer provided excellent anti-corrosion, photothermal and enzymatic effects. In addition, the released Mg, Fe, and Mn ions have a positive influence on angiogenesis and osteogenesis. Thus, the LDH-MnFe showed complementary and synergistic effects on anti-corrosion and multibiofunctions (antibacteria, antitumor, and osteogenesis). The present work offers a novel multifunctional Mg-based implant for treating bone diseases.


Assuntos
Doenças Ósseas , Magnésio , Humanos , Magnésio/farmacologia , Ligas/farmacologia , Hidróxidos , Antibacterianos/farmacologia
11.
Environ Pollut ; 316(Pt 2): 120707, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427829

RESUMO

Microplastics (MPs) can absorb halogenated organic compounds and transport them into marine anaerobic zones. Microbial reductive dehalogenation is a major process that naturally attenuates organohalide pollutants in anaerobic environments. Here, we aimed to determine the mechanisms through which MPs affect the microbe-mediated marine halogen cycle by incubating 2,4,6-trichlorophenol (TCP) dechlorinating cultures with various types of MPs. We found that TCP was dechlorinated to 4-chlorophenol in biotic control and polypropylene (PP) cultures, but essentially terminated at 2,4-dichlorophenol in polyethylene (PE) and polyethylene terephthalate (PET) cultures after incubation for 20 days. Oxygen-containing functional groups such as peroxide and aldehyde were enriched on PE and PET after incubation and corresponded to elevated levels of intracellular reactive oxygen species (ROS) in the microorganisms. Adding PE or PET to the cultures exerted limited effects on hydrogenase and ATPase activities, but delayed the expression of the gene encoding reductive dehalogenase (RDase). Considering the limited changes in the microbial composition of the enriched cultures, these findings suggested that microbial dechlorination is probably affected by MPs through the ROS-induced inhibition of RDase synthesis and/or activity. Overall, our findings showed that extensive MP pollution is unfavorable to environmental xenobiotic detoxification.


Assuntos
Clorofenóis , Microplásticos , Plásticos , Anaerobiose , Espécies Reativas de Oxigênio , Clorofenóis/toxicidade , Polietileno , Polietilenotereftalatos
12.
Sci Total Environ ; 881: 163366, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044349

RESUMO

To date, multiple studies have shown that the accumulation of microplastics (MPs)/nanoplastics (NPs) in the environment may lead to various problems. However, the effects of MPs/NPs on microbial communities and biogeochemical processes, particularly methane metabolism in cold seep sediments, have not been well elucidated. In this study, an indoor microcosm experiment for a period of 120 days exposure of MPs/NPs was conducted. The results showed that MPs/NPs addition did not significantly influence bacterial and archaeal richness in comparison with the control (p > 0.05), whereas higher levels of NPs (1 %, w/w) had a significant adverse effect on bacterial diversity (p < 0.05). Moreover, the bacterial community was more sensitive to the addition of MPs/NPs than the archaea, and Epsilonbacteraeota replaced Proteobacteria as the dominant phylum in the MPs/NPs treatments (except 0.2 % NPs). With respect to the co-occurrence relationships, network analysis showed that the presence of NPs, in comparison with MPs, reduced microbial network complexity. Finally, the presence of MPs/NPs decreased the abundance of mcrA, while promoting the abundance of pmoA. This study will help elucidate the responses of microbial communities to MPs/NPs and evaluate their effects on methane metabolism in cold seep ecosystems.


Assuntos
Microbiota , Plásticos , Plásticos/metabolismo , Polietileno/metabolismo , Bactérias/metabolismo , Archaea/metabolismo , Microplásticos/metabolismo , Metano/metabolismo
13.
J Hazard Mater ; 452: 131350, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030223

RESUMO

Polychlorinated biphenyls (PCBs) and microplastics (MPs) commonly co-exist in various environments. MPs inevitably start aging once they enter environment. In this study, the effect of photo-aged polystyrene MPs on microbial PCB dechlorination was investigated. After a UV aging treatment, the proportion of oxygen-containing groups in MPs increased. Photo-aging promoted the inhibitory effect of MPs on microbial reductive dechlorination of PCBs, mainly attributed to the inhibition of meta-chlorine removal. The inhibitory effects on hydrogenase and adenosine triphosphatase activity by MPs increased with increasing aging degree, which may be attributed to electron transfer chain inhibition. PERMANOVA showed significant differences in microbial community structure between culturing systems with and without MPs (p < 0.05). Co-occurrence network showed a simpler structure and higher proportion of negative correlation in the presence of MPs, especially for biofilms, resulting in increased potential for competition among bacteria. MP addition altered microbial community diversity, structure, interactions, and assembly processes, which was more deterministic in biofilms than in suspension cultures, especially regarding the bins of Dehalococcoides. This study sheds light on the microbial reductive dechlorination metabolisms and mechanisms where PCBs and MPs co-exist and provides theoretical guidance for in situ application of PCB bioremediation technology.


Assuntos
Bifenilos Policlorados , Envelhecimento da Pele , Bifenilos Policlorados/metabolismo , Microplásticos , Plásticos , Poliestirenos , Biodegradação Ambiental , Cloro/farmacologia , Cloro/metabolismo , Sedimentos Geológicos/microbiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-35564722

RESUMO

Peat is a nonrenewable resource that we are using at alarming rates. Development of peat alternative from pruning waste (PW) could be a cost- and environment-friendly way of disposal. Steam explosion (SE) is a commonly used pretreatment of lignocellulosic biomass, but its impact on the properties of PW as a growing substrate is largely unknown. To address this issue, PW was treated using five SE temperatures (160, 175, 190, 205 and 220 °C) and three retention times (1, 3 and 5 min) and evaluated for key traits of growing substrate. Results indicate that bulk density, total porosity, EC, total carbon, and concentration of phytotoxins including phenol, flavonoid, and alkaloid significantly increased or tended to increase with increasing temperature and/or retention time. A reversed trend was observed for water-holding capacity, pH, content of hemicellulose and lignin, and germination index. Cation exchange capacity and total N showed minimal response to SE. Steam explosion had inconsistent impacts on acid soluble nutrients. Phytotoxicity was a major factor limiting the use of SE-treated PW as growing substrate. Higher pretreatment severity led to higher phytotoxicity but also facilitated subsequent phytotoxicity removal by torrefaction. Pruning waste treated by SE and torrefaction under certain conditions may be used as peat substitute for up to 40% (v/v).


Assuntos
Alcaloides , Vapor , Biomassa , Lignina/química , Plantas , Solo
15.
Sci Total Environ ; 831: 154904, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35364163

RESUMO

Microplastics (MPs) and polychlorinated biphenyls (PCBs) generally coexist in the environment, posing risks to public health and the environment. This study investigated the effect of different MPs on the microbial anaerobic reductive dechlorination of Aroclor 1260, a commercial PCB mixture. MP exposure inhibited microbial reductive dechlorination of PCBs, with inhibition rates of 39.43%, 23.97%, and 17.53% by polyethylene (PE), polypropylene (PP), and polystyrene (PS), respectively. The dechlorination rate decreased from 1.63 µM Cl- d-1 to 0.99-1.34 µM Cl- d-1 after MP amendment. Chlorine removal in the meta-position of PCBs was primarily inhibited by MPs, with no changes in the final PCB dechlorination metabolites. The microbial community compositions in MP biofilms were not significantly different (P > 0.05) from those in suspension culture, although possessing greater Dehalococcoides abundance (0.52-0.81% in MP biofilms; 0.03-0.12% in suspension culture). The co-occurrence network analysis revealed that the presence of MPs attenuated microbial synergistic interactions in the dechlorinating culture systems, which may contribute to the inhibitory effect on microbial PCB dechlorination. These findings are important for comprehensively understanding microbial dechlorination behavior and the environmental fate of PCBs in environments with co-existing PCBs and MPs and for guiding the application of in situ PCB bioremediation.


Assuntos
Chloroflexi , Bifenilos Policlorados , Arocloros , Biodegradação Ambiental , Cloro/metabolismo , Chloroflexi/metabolismo , Sedimentos Geológicos , Microplásticos , Plásticos/metabolismo , Bifenilos Policlorados/metabolismo
16.
Nat Commun ; 13(1): 1338, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288556

RESUMO

Gelatinous underwater invertebrates such as jellyfish have organs that are transparent, luminescent and self-healing, which allow the creatures to navigate, camouflage themselves and, indeed, survive in aquatic environments. Artificial luminescent materials that can mimic such functionality can be used to develop aquatic wearable/stretchable displays and water-resistant devices. Here, a luminescent composite that is simultaneously transparent, tough and can autonomously self-heal in both dry and wet conditions is reported. A tough, self-healable fluorine elastomer with dipole-dipole interactions is synthesized as the polymer matrix. It exhibits excellent compatibility with metal halide perovskite quantum dots. The composite possesses a toughness of 19 MJ m-3, maximum strain of 1300% and capability to autonomously self-heal underwater. Notably, the material can withstand extremely harsh aqueous conditions, such as highly salty, acidic (pH = 1) and basic (pH = 13) environment for more than several months with almost no decay in mechanical performance or optical properties.


Assuntos
Elastômeros , Polímeros , Compostos de Cálcio , Elastômeros/química , Óxidos , Polímeros/química , Titânio
17.
Environ Technol ; 43(11): 1648-1661, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33136522

RESUMO

The preparation method of PVDF/SiO2-g-CDs blended membrane was that the silanized modified carbon dots (CDs) were grafted onto the PVDF/SiO2 blended membrane surface. The surface composition, morphology, hydrophilicity, fluorescence performance and metal ions adsorption performance of PVDF/SiO2-g-CDs blended membrane were studied. The fluorescence quenching effect of the membrane with Hg2+ and Fe3+ was obvious. The quenching mechanism was the complexation of metal ions with the functional groups of CDs including -NH2, -OH and -COOH. The optical detection limits of PVDF/SiO2-g-CDs blended membrane for Hg2+ was 1.6 nM in the linear range of 0.0025-20 µM, and the optical detection limits for Fe3+ was 2.1 µM in the linear range of 0.5-5000 µM. The maximum adsorption capacity of PVDF/SiO2-g-CDs blended membrane for Fe3+ was 47.04 mg·g-1. The adsorption of the membrane conformed to the pseudo-second-order kinetics and Langumir model, and belonged to monolayer chemical adsorption on the membrane surface. Through adsorption thermodynamic analysis, adsorption was a spontaneous endothermic process. The recovery rate of fluorescence and adsorption capacity could still be maintained above 82% after five cycles. The PVDF/SiO2-g-CDs blended membrane had the ability to regenerate. In summary, the PVDF/SiO2-g-CDs blended membrane had the dual functions of detecting and adsorbing metal ions, and had broad application prospects in sewage treatment.


Assuntos
Carbono , Mercúrio , Adsorção , Carbono/química , Fluorescência , Polímeros de Fluorcarboneto , Íons , Metais , Polivinil , Dióxido de Silício
18.
Acta Biomater ; 152: 575-592, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070834

RESUMO

Implant-associated infections (IAI) and osseointegration disorders are the most common complications in orthopedics. Studies have shown that neutrophils surrounding implants play a vital role in regulating these complications. Although magnesium (Mg) and its alloys are considered promising biodegradable bone implants, their role in neutrophil-mediated antibacteria has not yet been examined. Considering the rapid corrosion of Mg, it is necessary to develop methods to inhibit its corrosion. To solve these issues, a zinc-doped ferric oxyhydroxide nano-layer modified plasma electrolytic oxidation (PEO)-coated Mg alloy (PEO-FeZn) was developed in this study, and its antibacterial, immune anti-infective, and osteogenic ability were systematically evaluated. The results showed that PEO-FeZn nano-layer enhanced the corrosion resistance, biocompatibility, bactericidal activity, and osteoblastic differentiation activity of the Mg alloy. Moreover, PEO-FeZn nano-layer inhibited immune evasion-related gene expression and contributed to the formation of neutrophil extracellular traps (NETs) by activating the extracellular release of DNA fibers and granule proteins, and thereby suppressing bacterial invasion and promoting osseointegration in vivo in Staphylococcus aureus (S. aureus)-infected rat femurs. Overall, the findings of this study could serve as a reference for the fabrication of highly biocompatible and corrosion resistant Mg alloys to address the challenges of IAI and osseointegration disorders. STATEMENT OF SIGNIFICANCE: The widely used metallic biomaterials usually come with the risk of IAI. As the first responder around the biomaterials, neutrophils could form NETs to defense against microorganism and promote tissue remodeling. Therefore, biomaterials addressing antibacterial and neutrophils-modulatory strategies are highly necessary in reducing IAI. To solve these issues, we grew PEO-FeZn nano-layers in situ on Mg alloy using a simple and green technique. The nano-layer not only enhanced the corrosion resistance and biocompatibility of Mg alloy, but also elevated the antibacterial and osteogenesis capability. Moreover, nano-layer contributed to NETs formation, thereby suppressing bacterial invasion and even promoting osseointegration in S.aureus-infected femurs. Accordingly, this functionalized multilayer coating with antibacterial immunity represents a novel therapeutic strategy for IAI and weak osseointegration.


Assuntos
Ligas , Armadilhas Extracelulares , Implantes Absorvíveis , Ligas/farmacologia , Animais , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Compostos Férricos , Magnésio/farmacologia , Osseointegração , Ratos , Staphylococcus aureus , Propriedades de Superfície , Zinco/farmacologia
19.
Acta Biomater ; 153: 494-504, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115653

RESUMO

The field of nanomedicine-catalyzed tumor therapy has achieved a lot of progress; however, overcoming the limitations of the tumor microenvironment (TME) to achieve the desired therapeutic effect remains a major challenge. In this study, a nanocomposite hydrogel (GH@LDO) platform combining the nanozyme CoMnFe-layered double oxides (CoMnFe-LDO) and natural enzyme glucose oxidase (GOX) was engineered to remodel the TME to enhance tumor catalytic therapy. The CoMnFe-LDO is a nanozyme that can convert endogenous H2O2 into reactive oxygen species (ROS) and O2 to achieve chemodynamic therapy (CDT) and alleviate the hypoxic microenvironment. Meanwhile, GOX can catalyze the conversion of glucose and O2 to gluconic acid and H2O2, which not only represses the ATP production of tumor cells to achieve starvation therapy (ST), but also decreases the pH value of TME and supplies extra H2O2 to enhance the CDT effect. Furthermore, this well-designed CoMnFe-LDO possessed a high photothermal conversion efficiency of GH@LDO (66.63%), which could promote the generation of ROS to enhance the CDT effect and achieve photothermal therapy (PTT) under near-infrared light irradiation. The GH@LDO hydrogel performes cascade reaction which overcomes the limitation of the TME and achieves satisfactory CDT/ST/PTT synergetic effects in vitro and in vivo. This work provides a new strategy for remodeling the TME using nanomedicine to achieve precise tumor cascaded catalytic therapy. STATEMENT OF SIGNIFICANCE: At present, the focus of tumor therapy has begun to shift from monotherapy to combination therapy for improving the overall therapeutic effect. In this study, we synthesized a CoMnFe-LDO nanozyme composed of multiple transition metal oxides, which demonstrated improved peroxidase and oxidase activities as well as favorable photothermal conversion capability. The CoMnFe-LDO nanozyme was compounded with an injectable GH hydrogel crosslinked by GOX and horseradish peroxidase (HRP). This nanocomposite hydrogel overcame the limitations of weak acidity, H2O2, and O2 levels in the TME and achieved synergetic CDT, ST, and PTT effects based on the cascaded catalytic actions of CoMnFe-LDO and GOX to H2O2 and glucose.


Assuntos
Neoplasias , Óxidos , Humanos , Hidrogéis/uso terapêutico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Terapia Fototérmica , Nanogéis , Linhagem Celular Tumoral , Microambiente Tumoral , Glucose Oxidase , Neoplasias/patologia , Glucose , Reatores Biológicos
20.
Micromachines (Basel) ; 12(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34357234

RESUMO

Based on the conventional structure of traveling wave ultrasonic motor, a rotary ultrasonic motor with double-sided staggered teeth was proposed. Both sides of the stator could be used to actuate the rotors to rotate and output torque. Moreover, the staggered teeth in the stator could be dedicated to accommodating the piezoelectric ceramic chips. Under the excitation of two alternating voltages with a 90° phase difference, a traveling wave could be generated in the ring-like stator. Then, a rotary motion could be realized by means of the friction between the rotors and the driving teeth of the stator. The finite element method was adopted to analyze the motion trajectories of the driving tips. Moreover, the experimental results showed that the load-free maximum speed and maximum output torque of the prototype were 99 rpm and 0.19 N·m at a voltage of 150 Vp with a frequency of 28.25 kHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA