Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732136

RESUMO

In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Lignina , Proteínas de Plantas , Lignina/biossíntese , Gossypium/genética , Gossypium/metabolismo , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Parede Celular/metabolismo , Parede Celular/genética , Celulose/biossíntese , Celulose/metabolismo , Vias Biossintéticas
2.
Eur J Pharm Biopharm ; 199: 114299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643953

RESUMO

Lipid-polymer nanoparticles offer a promising strategy for improving gene nanomedicines by combining the benefits of biocompatibility and stability associated with the individual systems. However, research to date has focused on poly-lactic-co-glycolic acid (PLGA) and resulted in inefficient transfection. In this study, biocompatible Eudragit constructs E100 and RS100 were formulated as lipid-polymer nanoparticles loaded with pDNA expressing red fluorescent protein (RFP) as a model therapeutic. Using a facile nanoprecipitation technique, a core-shell structure stabilised by lipid-polyethylene glycol (PEG) surfactant was produced and displayed resistance to ultracentrifugation. Both cationic polymers E100 (pH-sensitive dissolution at 5) and RS100 (pH-insensitive dissolution) produced 150-200 nm sized particles with a small positive surface charge (+3-5 mV) and high pDNA encapsulation efficiencies (EE) of 75-90%. The dissolution properties of the Eudragit polymers significantly impacted the biological performance in human embryonic kidney cells (HEK293T). Nanoparticles composed of polymer RS100 resulted in consistently high cell viability (80-100%), whereas polymer E100 demonstrated dose-dependent behaviour (20-90% cell viability). The low dissolution of polymer RS100 over the full pH range and the resulting nanoparticles failed to induce RFP expression in HEK293T cells. In contrast, polymer E100-constructed nanoparticles resulted in reproducible and gradually increasing RFP expression of 26-42% at 48-72 h. Intraperitoneal (IP) injection of the polymer E100-based nanoparticles in C57BL/6 mice resulted in targeted RFP expression in mouse testes with favourable biocompatibility one-week post-administration. These findings predicate Eudragit based lipid-polymer nanoparticles as a novel and effective carrier for nucleic acids, which could facilitate pre-clinical evaluation and translation of gene nanomedicines.


Assuntos
DNA , Nanopartículas , Plasmídeos , Transfecção , Humanos , Animais , Nanopartículas/química , Concentração de Íons de Hidrogênio , Plasmídeos/administração & dosagem , Transfecção/métodos , Células HEK293 , Camundongos , DNA/administração & dosagem , DNA/química , Lipídeos/química , Polímeros/química , Solubilidade , Tamanho da Partícula , Polietilenoglicóis/química , Proteína Vermelha Fluorescente , Ácidos Polimetacrílicos/química , Masculino , Acrilatos
3.
Proc Inst Mech Eng H ; 237(12): 1348-1365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38031395

RESUMO

In this study, carboxylated carbon nanotube (CNT)-loaded curcumin (CUR) was blended into calcium phosphate cement (CPC) owing to the poor mechanical properties and single function of CPC as a bone-filling material, and CNT-CUR-CPC with improved strength and antitumor properties was obtained. The failure strength, hydrophilicity, in vitro bioactivity, bacteriostatic activity, antitumor activity, and cell safety of CNT-CUR-CPC were evaluated. The experimental results indicated that the failure strength of CNT-CUR-CPC increased from 25.05 to 45.05 MPa (p < 0.001) and its contact angle decreased from 20.37° to 15.27° (p < 0.001) after the CNT-CUR complex was added into CPC at the rate of 5 wt% and blended. Following soaking in simulated body fluid (m-SBF), the main components of CNT-CUR-CPC were hydroxyapatite (HA) and carbonate hydroxyapatite (HCA). The incorporation of CNT-CUR was beneficial for the deposition of PO43- and CO32-, and it promoted the crystallization of HA and HCA. For CNT-CUR-CPC, the inhibition zone diameter on Staphylococcus aureus was 10.2 ± 1.02 mm (p < 0.001) and it exhibited moderate sensitivity, whereas the inhibition zone diameter on Escherichia coli was 8.3 ± 0.23 mm (p < 0.001) and it exhibited low sensitivity. When compared with the CPC, the cell proliferation rate (RGR %) of the CNT-CUR-CPC decreased by 7.73% (p > 0.05) at 24 h, 17.89% (p < 0.05) at 48 h, and 24.43% (p < 0.001) at 72 h when MG63 cells were cultured on it. In particular, after the MG63 cells were cultured with the CNT-CUR-CPC for 48 h, the number of newly proliferating MG63 cells was significantly reduced, and their growth and adhesion on the surface of the CNT-CUR-CPC were inhibited when compared with the CPC. When 3T3-E1 cells were exposed to the m-SBF immersion solution of CNT-CUR-CPC, the cell proliferation rate (RGR %) was ≥80% (p > 0.05) and the cytotoxicity grade was 0-1. The 3T3-E1 cells were cultured with the m-SBF soaking solution of CNT-CUR-CPC for 24 h, and no significant changes in cell morphology or cytotoxicity were observed. After the 3T3-E1 cells were cultured on CNT-CUR-CPC for 48 h, they could stick to and grow on its surface without adverse reactions. CNT-CUR-CPC had a hemolysis rate of 4.3% (p > 0.05) and did not result in hemolysis and hemagglutination. The obtained CNT-CUR-CPC scaffold material exhibited effective antibacterial activity and cell safety, and could achieve a certain antitumor effect, which has a wide application potential in bone tissue engineering.


Assuntos
Curcumina , Nanotubos de Carbono , Humanos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Teste de Materiais , Curcumina/farmacologia , Hemólise , Força Compressiva , Fosfatos de Cálcio/química , Durapatita/farmacologia , Durapatita/química
4.
Environ Sci Pollut Res Int ; 30(2): 4754-4768, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35974268

RESUMO

Adsorption has been considered as a promising remediation technology to separate organic and inorganic agrochemicals from contaminated soil and water. Low-cost adsorbents, including waste derived materials, clay composites, biochar, and biochar modified materials, have attracted enormous attention for the removal of organic contaminants, including pesticides. In this study, iron-modified base-activated biochar (FeBBC) was prepared by pyrolysis (at 400 °C for 1 h) of iron-doped base (KOH) activated sugarcane bagasse for the removal of a widely used insecticide, namely imidacloprid (IMI) from water. The maximum adsorption capacity of the adsorbent (FeBBC) was calculated as 10.33 (± 1.57) mg/g from Langmuir isotherm model. The adsorbents could remove up to ~ 92% of IMI from aqueous solution at 23.8 mg/L IMI. Experimental data fitted well with the Freundlich model and pseudo-second-order model, demonstrating physisorption, as well as chemosorption, contributed to the sorption process. Even at highly acidic/basic solution pH, the FeBBC could remove substantial amount of IMI demonstrating hydrophobic interaction and pore diffusion play vital role for removal of IMI. The slight improving of IMI sorption with increasing solution pH indicated the sorption was also facilitated through ionic interaction alongside physical sorption. However, physical sorption including hydrophobic interaction and pore-filling interaction plays a vital role in the sorption of IMI.


Assuntos
Saccharum , Poluentes Químicos da Água , Ferro , Celulose , Carvão Vegetal/química , Água , Adsorção , Poluentes Químicos da Água/química , Cinética
5.
Int J Pharm ; 627: 122223, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36155792

RESUMO

Lipid/polymer hybrid nanoparticles loaded with red fluorescent protein (RFP) encoded plasmid DNA (pDNA) was formulated using poly-lactic-co-glycolic acid (PLGA), cationic lipid DC-cholesterol and surfactant mPEG2000- DSPE. A lipid/ polymer ratio of 1: 10 at 1 mg/mL surfactant concentration was found to be optimal for producing nanoparticles with diameters of 100-120 nm that remained stable upon ultracentrifugation. The production of lipid/ polymer hybrid nanoparticles was investigated using microfluidics with a toroidal mixer design. Our results showed that the flow parameters significantly influenced the physicochemical characteristics of nanoparticles and loading of pDNA was only achieved at flow rate ratio (FRR) of 3: 1. The pDNA associated with nanoparticles was demonstrated to be structurally intact using gel electrophoresis, and the encapsulation efficiency (EE) was measured to be ∼65%. The prepared hybrid nanoparticles resulted in 20% of transfection efficacy in human embryonic kidney cells (HEK293T). This study demonstrated the potential of microfluidics in the development of hybrid nanoparticles for pDNA delivery, thus facilitating the clinical translation of DNA therapeutics.


Assuntos
Nanopartículas , Ácido Poliglicólico , Humanos , Ácido Láctico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Microfluídica , Células HEK293 , Tamanho da Partícula , Plasmídeos , Transfecção , DNA/genética , Tensoativos , Lipídeos
6.
Trials ; 22(1): 555, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419109

RESUMO

BACKGROUND: Esophagogastroduodenoscopy is very useful in diagnosing and treating upper gastrointestinal mucosal disorders, but too much foam and water in stomach decrease its diagnostic efficiency. Simethicone administration can help remove excessive foam. AIMS: To determine the optimal simethicone administration strategies in a comparative randomized controlled clinical trial. METHODS: Adult outpatients with indications for esophagogastroduodenoscopy were enrolled and randomly divided into group 1 (simethicone solution intake 20-30 min before procedure, n = 110), group 2 (simethicone solution intake 31-60 min before procedure, n = 92), and group 3 (simethicone solution intake > 60 min before procedure). Primary and secondary outcomes were procedure time and the patients' satisfaction after the examination. All symptoms like abdominal pain and distension were recorded. RESULTS: No statistically significant differences were found on the patients' demographic and clinical features and mean examination time (all P values > 0.05). The distribution of patients with different endoscopic and pathological diagnosis was comparable among three groups, respectively (P = 0.607; P = 0.289). However, the proportion of patients with Gastric Cleanness Grade A was most in group 2 (n = 73, 79.3%), and patient proportion with Gastric Cleanness Grade C was most found in group 1 (n = 72, 65.5%), which was greatly different (P < 0.001). There was no statistically significant difference on the satisfaction scores [immediately 6 (3-8) vs. 6 (1-10) vs. 6 (1-9), P = 0.533; 2 h after 10 (8-10) vs. 10 (10-10) vs. 10 (8-10), P = 0.463]. CONCLUSION: Simethicone solution intake 31-60 min before esophagogastroduodenoscopy can help obtain the best gastric cleanness, which is recommended in clinical practice (registered at ClinicalTrials.gov, NCT03776916 on December 13, 2018).


Assuntos
Gastroenteropatias , Simeticone , Adulto , Endoscopia do Sistema Digestório , Humanos , Estudos Prospectivos , Simeticone/efeitos adversos , Estômago
7.
Prev Vet Med ; 154: 102-112, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29685433

RESUMO

Given the shortage and non-availability of freshwater in Pakistan, wastewater is being used for bathing water buffaloes; however, this has a negative impact on animal welfare. Although there is a vast literature on indirect linkages between wastewater and animal productivity, studies focusing on the direct impacts of water buffaloes bathing in wastewater on animal productivity and economic losses are rare. Therefore, using 360 domestic water buffalo farms, this study examines the expenditure and production losses associated with bathing (in wastewater and freshwater) and non-bathing water buffaloes by employing partial budgeting and resource adjustment component techniques. Furthermore, it investigates the prevalence of animal diseases and associated economic effects using correlation analysis and propensity score matching techniques, respectively. The findings reveal that compared to their counterparts (freshwater bathing and non-bathing water buffaloes), buffaloes bathing in wastewater are at increased risk of clinical mastitis, foot and mouth disease (FMD) and tick infestation. Moreover, the use of wastewater for bathing buffaloes also leads to higher economic and production losses by affecting milk productivity, causing premature culling, and reducing slaughter value. The findings of the double-log model show that economic losses are higher if buffaloes bathe in wastewater within 30 min after milking, as there are more chances that those buffaloes would be exposed to bacterial penetration in the teat ducts, which may result in intramammary infection. According to the propensity score matching method, the higher economic damages per month are associated with buffaloes bathing in wastewater and freshwater, 155 and 110 USD per farm, respectively. The study findings reference the need for policies to restrict wastewater access by water buffaloes, and a regular check of and access to cool clean water wallows for bathing during hot summer days, to reduce excess heat and economic losses, and thus improve animal welfare.


Assuntos
Búfalos , Febre Aftosa/epidemiologia , Mastite/veterinária , Infestações por Carrapato/veterinária , Microbiologia da Água , Animais , Feminino , Febre Aftosa/economia , Febre Aftosa/prevenção & controle , Mastite/economia , Mastite/epidemiologia , Mastite/prevenção & controle , Paquistão , Prevalência , Infestações por Carrapato/economia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA