Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Nanobiotechnology ; 19(1): 385, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809623

RESUMO

Demineralization of hard tooth tissues leads to dental caries, which cause health problems and economic burdens throughout the world. A biomimetic mineralization strategy is expected to reverse early dental caries. Commercially available anti-carious mineralizing products lead to inconclusive clinical results because they cannot continuously replenish the required calcium and phosphate resources. Herein, we prepared a mineralizing film consisting of hydroxypropylmethylcellulose (HPMC) and polyaspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles. HPMC which contains multiple hydroxyl groups is a film-forming material that can be desiccated to form a dry film. In a moist environment, this film gradually changes into a gel. HPMC was used as the carrier of PAsp-ACP nanoparticles to deliver biomimetic mineralization. Our results indicated that the hydroxyl and methoxyl groups of HPMC could assist the stability of PAsp-ACP nanoparticles and maintain their biomimetic mineralization activity. The results further demonstrated that the bioinspired mineralizing film induced the early mineralization of demineralized dentin after 24 h with increasing mineralization of the whole demineralized dentin (3-4 µm) after 72-96 h. Furthermore, these results were achieved without any cytotoxicity or mucosa irritation. Therefore, this mineralizing film shows promise for use in preventive dentistry due to its efficient mineralization capability.


Assuntos
Materiais Biomiméticos , Fosfatos de Cálcio , Cárie Dentária/metabolismo , Derivados da Hipromelose , Calcificação de Dente/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacocinética , Fosfatos de Cálcio/farmacologia , Células Cultivadas , Dentina/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Derivados da Hipromelose/química , Derivados da Hipromelose/farmacologia , Masculino , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Coelhos
2.
J Mater Chem B ; 10(30): 5826-5834, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35876157

RESUMO

Biomineralization of collagen fibers is regulated by non-collagenous proteins and small biomolecules, which are essential in bone and teeth formation. In particular, small biomolecules such as succinic acid (SA) exist at a high level in hard tissues, but their role is yet unclear. Here, our work demonstrated that SA could significantly promote intrafibrillar mineralization in two- and three-dimensional collagen models, where the relative mineralization rate was 16 times faster than the control group. Furthermore, the FTIR spectra and isothermal experimental results showed that collagen molecules could interact with SA via a hydrogen bond and that the interaction energy was about 4.35 kJ mol-1. As expected, the SA-pretreated demineralized dentin obtained full remineralization within two days, whereas it took more than four days in the control group, and their mechanical properties were considerably enhanced compared with those of the demineralized one. The possible mechanism of the promotion effect of SA was ultimately illustrated, with SA modification strengthening the capacity of the collagen matrix to attract more calcium ions, which might create a higher local concentration that could accelerate the mineralization of collagen fibers. These findings not only advance the understanding of the vital role of small biomolecules in collagen biomineralization but also facilitate the development of an effective strategy to repair hard tissues.


Assuntos
Dentina , Succinatos , Biomineralização , Osso e Ossos/metabolismo , Colágeno/química , Succinatos/análise , Succinatos/metabolismo
3.
J Zhejiang Univ Sci B ; 22(3): 214-222, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33719226

RESUMO

OBJECTIVES: To coat a zirconia surface with silica-zirconia using a dip-coating technique and evaluate its effect on resin-zirconia shear bond strength (SBS). METHODS: A silica-zirconia suspension was prepared and used to coat a zirconia surface using a dip-coating technique. One hundred and eighty-nine zirconia disks were divided into three groups according to their different surface treatments (polishing, sandblasting, and silica-zirconia coating). Scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) were used to analyze the differently treated zirconia surfaces. Different primer treatments (Monobond N, Z-PRIME Plus, and no primer) were also applied to the zirconia surfaces. Subsequently, 180 composite resin cylinders (Filtek Z350) were cemented onto the zirconia disks with resin cement (RelyX Ultimate). The SBS was measured after water storage for 24 h or 6 months. The data were analyzed by two-way analysis of variance (ANOVA). RESULTS: SEM and EDX showed that the silica-zirconia coating produced a porous layer with additional Si, and XRD showed that only tetragonal zirconia was on the silica-zirconia-coating surface. Compared with the control group, the resin-zirconia SBSs of the sandblasting group and silica-zirconia-coating group were significantly increased (P<0.05). The silica-zirconia coating followed by the application of Monobond N produced the highest SBS (P<0.05). Water aging significantly reduced the resin-zirconia SBS (P<0.05). CONCLUSIONS: Dip-coating with silica-zirconia might be a feasible way to improve resin-zirconia bonding.


Assuntos
Colagem Dentária , Zircônio/química , Microscopia Eletrônica de Varredura , Porosidade , Dióxido de Silício , Propriedades de Superfície , Suspensões , Resistência à Tração , Difração de Raios X
4.
ACS Biomater Sci Eng ; 5(10): 5481-5488, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33464067

RESUMO

Dentin hypersensitivity is attributable to the exposed dentin and its patent tubules. We proposed the therapeutic management of demineralized dentin surfaces using a mineralizing adhesive to seal and remineralize dentin, dentinal tubules, and odontoblast processes. An experimental self-etch adhesive and a mineralizing adhesive consisting of the self-etch adhesive and 20 wt % poly-aspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles were prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. After 60 acid-etched midcoronal dentin disks were treated with distilled water (control), a desensitizing agent (Gluma), the experimental self-etch adhesive, and the mineralizing adhesive, dentin permeability was measured and mineralization was evaluated by Raman, FTIR, XRD, TEM, and selected-area electron diffraction, irrespective of abrasive and acidic challenges. In vitro cytotoxicity of the adhesive and the mineralizing adhesive was assessed by Cell Counting Kit-8. The mineralizing adhesive possessed excellent biocompatibility. We proposed a hybrid mineralization layer composed of the light-cured mineralizing adhesive and the mineralized dentin surfaces, as well as interiorly mineralized resin tags and odontoblast processes inside of the dentinal tubules. This hybrid mineralization not only reduced dentin permeability but also resisted abrasive and acidic attacks.

5.
Nanoscale ; 10(40): 18980-18987, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30191236

RESUMO

We propose a novel fluorescent adhesive-assisted biomimetic mineralization strategy, based on which 1 wt% of sodium fluorescein and 25 wt% of polyacrylic acid stabilized amorphous calcium phosphate (PAA-ACP) nanoparticles were incorporated into a mild self-etch adhesive (Clearfil S3 Bond) as a fluorescent mineralizing adhesive. The characterization of the PAA-ACP nanoparticles indicates that they were spherical particles clustered together, each particle with a diameter of approximately 20-50 nm, in a metastable phase with two characteristic absorption peaks (1050 cm-1 and 580 cm-1). Our results suggest that the fluorescent mineralizing adhesive was non-cytotoxic with minimal esthetic interference and its fluorescence intensity did not significantly decrease within 6 months. Our data reveal that the fluorescent mineralizing adhesive could induce the extra- and intra-fibrillar remineralization of the reconstituted type I collagen, the demineralized enamel and dentin substrate. Our data demonstrate that a novel fluorescent adhesive-assisted biomimetic mineralization strategy will pave the way to design and produce anti-carious materials for the prevention of dental caries.


Assuntos
Materiais Biomiméticos/química , Esmalte Dentário/química , Adesivos Dentinários/química , Dentina/química , Teste de Materiais , Nanopartículas/química , Cimentos de Resina/química , Resinas Acrílicas/química , Animais , Fosfatos de Cálcio/química , Linhagem Celular , Humanos , Camundongos
6.
ACS Appl Mater Interfaces ; 9(21): 17710-17717, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28525257

RESUMO

Lab biomineralization should be carried out in an actual clinical practice. This study evaluated self-etch adhesive as a carrier for amorphous calcium phosphate (ACP) nanoprecursors to continuously deliver biomimetic remineralization of self-assembly type I collagen and demineralized dentin. Si-containing ACP particles (Si-ACP) stabilized with polyaspartic acid (PAsp) were synthesized and characterized by transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray spectroscopy, Fourier transform infrared analysis, X-ray powder diffractometry, and X-ray phototelectron spectroscopy. The biomimetic remineralization of single-layer reconstituted type I collagen fibrils and demineralized dentin was analyzed by using two one-bottle self-etch dentin adhesives (Clearfil S3 Bond (S3), Kurraray-Noritake; Adper Easy One (AEO), 3 M ESPE) as a carrier loaded (or not, in the case of the control) with 25 wt % of Si-ACP particles. In vitro cytotoxicity assessed by the Cell Counting Kit-8 indicated that the Si-ACP particles had no adverse effect on cell viability. The capacity for Ca and P ions release from cured Si-ACP-containing adhesives (S3, AEO) was evaluated by inductively coupled plasma-atomic emission spectrometry, revealing the successively increasing release of Ca and P ions for 28 days. The intra- and extrafibrillar remineralization of type I collagen and demineralized dentin was confirmed by TEM and selected-area electron diffraction when the adhesives were used as a carrier loaded with Si-ACP particles. Therefore, we propose self-etch adhesive as a novel carrier for ACP nanoprecursors to continuously deliver biomimetic remineralization.


Assuntos
Biomimética , Adesivos , Dentina , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA