Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768355

RESUMO

In order to achieve smart biomedical micro/nanomaterials, promote interaction with biomolecules, improve osteogenic/chondrogenic differentiation, exhibit better dispersion in bone implants and ultimately maximize functionality, we innovatively and successfully designed and synthesized polymer PBLG-modified GdPO4·H2O nanobunches by hydroxylation, silylation and glutamylation processes. The effects of different feeding ratios on the surface coating of GdPO4·H2O with Si-OH, the grafting γ-aminopropyltriethoxysilane (APS) and the in situ ring-opening polymerization reaction of poly(g-benzyl-L-glutamate) (PBLG) were investigated, and the physical and chemical properties were characterized in detail. When GdPO4·H2O@SiO2-APS:NCA = 4:1, the PBLG-g-GdPO4·H2O grafting rate was 5.93%, with good stability and dispersion in degradable polymeric materials. However, the MRI imaging signal was sequentially weakened as the modification process proceeded. Despite this, the biological effects had surprising findings. All the modifiers at appropriate concentrations were biocompatible and biologically active and the biomacromolecules of COL I and COL II in particular were expressed at least 3 times higher in GdPO4·H2O@SiO2 compared to the PLGA. This indicates that the appropriate surface modification and functionalization of gadolinium-containing micro/nanomaterials can promote interaction with cells and encourage bone regeneration by regulating biomacromolecules and can be used in the field of biomedical materials.


Assuntos
Gadolínio , Osteogênese , Gadolínio/farmacologia , Condrogênese , Fosfatos/farmacologia , Dióxido de Silício/farmacologia , Diferenciação Celular , Ácido Glutâmico/farmacologia , Polímeros/química , Alicerces Teciduais/química
2.
Ecotoxicol Environ Saf ; 243: 113997, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988380

RESUMO

Concerns about the micro/nano plastics (MNPs) exposure risks have risen in recent years. The ecological corona (EC), which is generated by the interaction between MNPs and environmental substances, has a significant impact on their environmental fate and ecological risks. As the largest sink of MNPs, the aquatic environment is of great significance for understanding the environmental behaviour of MNPs. Transmission Electron Microscope (TME), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscope (SEM), Dynamic Light Scattering (DLS) and other analytical methods have been used as effective methods to analyse the formation process of EC and detect the existing EC directly or indirectly on the surface of MNPs. The physicochemical properties of MNPs, complex aquatic environments and ageing time have been identified as the key factors affecting EC formation in aquatic environments. Moreover, the EC absorbed on MNPs significantly changed their environmental behaviour and toxicity to aquatic organisms. This review gives a full understanding of the EC formation progress on the surface of MNPs and different analytical methods for EC have been summarised which can further assist the ecological risk assessment of MNPs in the aquatic environment.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Anal Chem ; 92(24): 15927-15935, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275415

RESUMO

Electrochemical in situ sensing of small signal molecules released from living cells has an increasing significance in early diagnosis, pathological analyses, and drug discovery. Here, a living cell-fixed sensing platform was built using the BC@DNA-Mn3(PO4)2 nanozyme, in which a highly biocompatible bacterial cellulose riveted with very tiny Mn3(PO4)2; it not only delivers high catalytic activity toward superoxide anions but possesses excellent biocompatibility for cell adsorption and growth. Additionally, the experimental results suggested that fixing the living cells on the surface of the sensing platform facilitates tiny Mn3(PO4)2 activity centers to capture and detect O2•- very quickly and simultaneously has great potential in miniaturization, cost reduction, and real-time monitoring.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , DNA/química , Nanoestruturas/química , Compostos Organometálicos/química , Superóxidos/análise , Materiais Biocompatíveis/síntese química , Técnicas Biossensoriais , Eletrodos , Humanos , Tamanho da Partícula , Superóxidos/metabolismo , Propriedades de Superfície , Fatores de Tempo , Células Tumorais Cultivadas
4.
Mol Pharm ; 16(7): 2902-2911, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31184906

RESUMO

The physical properties of nanoparticles (NPs), such as size, surface chemistry, elasticity, and shape, have exerted a profound influence on tumor penetration. However, the effect of shape on cellular uptake and tumor penetration is still unclear because of the different chemical compositions and shapes of tested particles and the use of inapposite cellular models. To discover the effect of NP shapes on cellular uptake and tumor penetration and bridge the gap between models in vivo and in vitro, elongated polystyrene (PS) NPs with a fixed volume, an identical chemical composition, and the same zeta potential, but with different aspect ratios (ARs), were generated. The physical properties, cellular uptake, tumor penetration, and corresponding mechanisms of these NPs were thoroughly investigated. We discovered that the elongated PS particles with higher ARs had lower uptake rates in the 2-dimensional cell monolayer culture model in vitro, but they showed optimal ARs in the evaluated three-dimensional spheroid model. Although the elongated PS particles had a similar tumor penetration mechanism (mainly through extracellular pathways), the percentage of penetration using these mechanisms was strongly dependent on the ARs. As an alternative model for studies in vivo, spheroids were used instead of the cell monolayer for the development of drug delivery systems. In addition, the physicochemical properties of NPs must be delicately balanced and adjusted to achieve the best therapeutic outcomes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polipropilenos/química , Esferoides Celulares/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Líquido Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Poliestirenos/química , Microambiente Tumoral/efeitos dos fármacos
5.
Artigo em Inglês | MEDLINE | ID: mdl-30596328

RESUMO

This study was undertaken to develops a new sludge dewatering technology based on polyethylene glycol solution dialysis. This method significantly reduced the final water content of sludge when compared to conventional dewatering methods. It was found that when the osmotic pressure difference between the polyethylene glycol solution and the sludge reached 8 MPa, the moisture content in the sludge was reduced to 28.6%, facilitating deep dehydration. To further improve the dehydration effect and explore the technical feasibility of dialysis dehydration, a dehydration experiment was designed using the polyethylene glycol solution dialysis method combined with external pressure. By applying external pressure to the dialysis membranes, the particles in the sludge were compacted, which reduced the internal voids of the sludge and propelled continuous water discharge. The results demonstrated that the dehydration effect was significantly improved when compared to single dialysis. A scanning electron microscope (SEM) was used to observe and quantitatively analyze the microstructure of the sludge before and after dehydration and to compare the variations in sludge microstructure throughout the dehydration process. The relationships between the sludge moisture content and the porosity and pore equivalent diameter were obtained. This demonstrated the effectiveness of the dewatering experiment using sludge dialysis combined with external pressure. This study also investigates the dehydration mechanism of this method during the sludge dehydration process. This study provides a novel solution for sludge volume reduction that can be applied to sewage treatment in the future.


Assuntos
Dessecação/métodos , Polietilenoglicóis/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Estudos de Viabilidade , Humanos , Osmose/fisiologia , Porosidade , Pressão , Água/química
6.
J Nanosci Nanotechnol ; 15(12): 9899-904, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682432

RESUMO

A degradable polycaprolactone(PCL)/poly(lactic-co-glycolic acid, LA:GA = 80:20) (PLGA) ureter tubular stent was fabricated by electrospinning. The structure and properties of the stents were investigated by the mechanical property testing, scanning electron microscopy (SEM), degradability test in vitro and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The stent was transplanted to the dorsal muscle of rabbit to evaluate its tissue compatibility. It was shown that the stent has the nano-structure. The mechanical test showed that with the increase in PCL concentration, the mechanical properties of the stent gradually increased, and it could meet the demands of a urethral stent. The collapse time of different concentration of PCL/PLGA (5%, 15%, and 25%) was 28, 42, and 56 days, respectively. These results provide strong evidence that the degradation time can be increased with the increase in PCL concentration. The results of the MTT assay show that the PCL/PLGA stent had no cytotoxicity. In muscle implantation tests, acute tissue reactions due to operation trauma were seen in all specimens at 1 week. After four weeks, the number of inflammatory cells had decreased significantly. Only a few inflammatory cells were seen in the PCL/PLGA stent group after 12 weeks, and the foreign body reaction was more severe in the control group. Animal orthotopic transplantation experiments of these ureteral stents will be done to evaluate its degradable model and tissue compatibility.


Assuntos
Materiais Biocompatíveis , Procedimentos de Cirurgia Plástica , Stents , Sistema Urinário/cirurgia , Animais , Ácido Láctico/química , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos
7.
Sci Total Environ ; 931: 172949, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703848

RESUMO

Biodegradable plastics (bio-plastics) are often viewed as viable option for mitigating plastic pollution. Nevertheless, the information regarding the potential risks of microplastics (MPs) released from bio-plastics in soil, particularly in flooded soils, is lacking. Here, our objective was to investigate the effect of polylactic acid MPs (PLA-MPs) and polyethylene MPs (PE-MPs) on soil properties, microbial community and plant growth under both non-flooded and flooded conditions. Our results demonstrated that PLA-MPs dramatically increased soil labile carbon (C) content and altered its composition and chemodiversity. The enrichment of labile C stimulated microbial N immobilization, resulting in a depletion of soil mineral nitrogen (N). This specialized environment created by PLA-MPs further filtered out specific microbial species, resulting in a low diversity and simplified microbial community. PLA-MPs caused an increase in denitrifiers (Noviherbaspirillum and Clostridium sensu stricto) and a decrease in nitrifiers (Nitrospira, MND1, and Ellin6067), potentially exacerbating the mineral N deficiency. The mineral N deficit caused by PLA-MPs inhibited wheatgrass growth. Conversely, PE-MPs had less effect on soil ecosystems, including soil properties, microbial community and wheatgrass growth. Overall, our study emphasizes that PLA-MPs cause more adverse effect on the ecosystem than PE-MPs in the short term, and that flooded conditions exacerbate and prolong these adverse effects. These results offer valuable insights for evaluating the potential threats of bio-MPs in both uplands and wetlands.


Assuntos
Inundações , Microbiota , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Solo , Microplásticos/toxicidade , Solo/química , Microbiota/efeitos dos fármacos , Plásticos Biodegradáveis , Desenvolvimento Vegetal , Biodegradação Ambiental , Poliésteres , Polietileno
8.
Sci Total Environ ; 930: 172511, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641106

RESUMO

The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.


Assuntos
Norfloxacino , Poliestirenos , Norfloxacino/química , Adsorção , Poliestirenos/química , Antibacterianos/química , Nanopartículas/química , Poluentes Químicos da Água/química , Processos Fotoquímicos , Modelos Químicos
9.
World J Clin Oncol ; 15(3): 411-418, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38576596

RESUMO

BACKGROUND: The neuroendoscopic approach has the advantages of a clear operative field, convenient tumor removal, and less damage, and is the development direction of modern neurosurgery. At present, transnasal surgery for sphenoidal pituitary tumor is widely used. But it has been found in clinical practice that some patients with this type of surgery may experience post-operative nausea and vomiting and other discomforts. AIM: To explore the effect of reserved gastric tube application in the neuroendoscopic endonasal resection of pituitary tumors. METHODS: A total of 60 patients who underwent pituitary adenoma resection via the endoscopic endonasal approach were selected and randomly divided into the experimental and control groups, with 30 in each group. Experimental group: After anesthesia, a gastric tube was placed through the mouth under direct vision using a visual laryngoscope, and the fluid accumulated in the oropharynx was suctioned intermittently with low negative pressure throughout the whole process after nasal disinfection, during the operation, and when the patient recovered from anesthesia. Control group: Given the routine intraoperative care, no gastric tube was left. The number of cases of nausea/vomiting/aspiration within 24 h post-operation was counted and compared between the two groups; the scores of pharyngalgia after waking up, 6 h post-operation, and 24 h post-operation. The frequency of postoperative cerebrospinal fluid leakage and intracranial infection were compared. The hospitalization days of the two groups were statistically compared. RESULTS: The times of postoperative nausea and vomiting in the experimental group were lower than that in the control group, and the difference in the incidence of nausea was statistically significant (P < 0.05). After the patient woke up, the scores of sore throat 6 h after the operation and 24 h after operation were lower than those in the control group, and the difference was statistically significant (P < 0.05). The number of cases of postoperative cerebrospinal fluid leakage and intracranial infection was higher than that of the control group, but there was no statistically significant difference from the control group (P > 0.05). The hospitalization days of the experimental group was lower than that of the control group, and the difference was statistically significant (P < 0.05). CONCLUSION: Reserving a gastric tube in the endoscopic endonasal resection of pituitary tumors, combined with intraoperative and postoperative gastrointestinal decompression, can effectively reduce the incidence of nausea, reduce the number of vomiting and aspiration in patients, and reduce the complications of sore throat The incidence rate shortened the hospitalization days of the patients.

10.
ACS Nano ; 17(20): 19526-19549, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37804317

RESUMO

The reconstruction engineering of tissue defects accompanied by major diseases including cancer, infection, and inflammation is one of the important challenges in clinical medicine. The development of innovative tissue engineering strategies such as multifunctional bioactive materials presents a great potential to overcome the challenge of disease-impaired tissue regeneration. As the major representative of two-dimensional nanomaterials, MXenes have shown multifunctional physicochemical properties and have been diffusely studied as multimodal nanoplatforms in the field of biomedicine. This review summarized the recent advances in the multifunctional properties of MXenes and integrated regeneration-therapy applications of MXene-based biomaterials, including tissue regeneration-tumor therapy, tissue regeneration-infection therapy, and tissue regeneration-inflammation therapy. MXenes have been recognized as good candidates for promoting tissue regeneration and treating diseases through photothermal therapy, regulating cell behavior, and drug and gene delivery. The current challenges and future perspectives of MXene-based biomaterials in integrated regeneration-therapy are also discussed well in this review. In summary, MXene-based biomaterials have shown promising potential for integrated tissue regeneration and disease treatment due to their favorable physicochemical properties and bioactive functions. However, there are still many obstacles and challenges that must be addressed for the regeneration-therapy applications of MXene-based biomaterials, including understanding the bioactive mechanism, ensuring long-term biosafety, and improving their targeting therapy capacity.


Assuntos
Materiais Biocompatíveis , Neoplasias , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Engenharia Tecidual , Neoplasias/terapia , Inflamação
11.
PLoS One ; 18(1): e0280533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656822

RESUMO

BACKGROUND: Adolescence is a critical time for adopting health behaviors which continue through adulthood. There is a lack of data regarding perspectives of US adolescents and young adults on their dental health and oral hygiene practice. METHODS: Adolescents and young adults, age 14-24, from MyVoice, a nationwide text message poll of youth. were asked five open-ended questions on the importance of dental health and impact of the COVID-19 pandemic. Responses were qualitatively analyzed using thematic analysis. Chi-square test was used to examine differences in experiences by demographics. RESULTS: Of 1,148 participants, 932 responded to at least one question. The mean age was 19 years. Respondents were largely male (49.5%) and non-Hispanic white (62.4%). Most (92%) respondents perceived dental health as important or somewhat important and emphasized overall dental health and hygiene (38.6%) and aesthetics (18.3%). About half (49.2%) of respondents stated they have had at least one cavity since middle school. Just over half (54.8%) reported brushing and flossing to care for their dentition. 58% visited a dentist at least every 6 months, while 38% visited a dentist less frequently or not at all. Being non-cisgender, non-Hispanic black, Hispanic, and receipt of free or reduced lunch was associated with less frequent dental visits. 44% stated COVID-19 impacted their dental health, with many mentioning scheduling difficulties or worsened dental hygiene. CONCLUSIONS: Most youth in our study consider dental health important, though their oral hygiene practice may not follow ADA guidelines and self-reported dental caries are high. Dental healthcare among youth has been affected by the COVID-19 pandemic with interruption in regular dental visits and changes in hygiene habits. Re-engagement of adolescents and young adults by dental care providers via greater access to appointments and youth-centered messaging reinforcing hygiene recommendations may help youth improve dental health now and in the future.


Assuntos
COVID-19 , Cárie Dentária , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Higiene Bucal , COVID-19/epidemiologia , Pandemias , Escovação Dentária , Saúde Bucal
12.
Sci Total Environ ; 886: 164033, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37169191

RESUMO

Concerns regarding the environmental hazards and health risks of nanoplastics (NPs) are increasing. However, quantifying of NPs in vivo remains challenging. In this study, we propose a strategy for using magnetic resonance imaging (MRI) to quantify NPs internalized by mouse macrophages. Model NPs (Fe3O4@PS) with more homogeneous sizes and morphologies were obtained by encapsulating Fe3O4 in polystyrene. A standard curve was generated by linearly fitting the intensity and concentration charts to the Fe3O4@PS MRI data. The mass of Fe3O4@PS captured by the mouse macrophages was estimated using a standard curve. An explanation of how the standard curves were created and used is provided in the text. The accuracy of the MRI results was demonstrated using, inductively coupled plasma (ICP). Quantitative results from MRI and ICP revealed that the mouse macrophage uptake increased as NPs concentrations decreased. According to the ICP results, when the NPs exposure concentration was 10 µg/mL, the uptake rate by mouse macrophages was 63.0 %. The quantitative MRI results were slightly lower than those for ICP, with an uptake rate of 57.7 % in mouse macrophages at the same concentration. Therefore, MRI provides a new perspective for quantitative NPs analysis.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Camundongos , Microplásticos , Imageamento por Ressonância Magnética/métodos , Poliestirenos/toxicidade , Transporte Biológico
13.
Huan Jing Ke Xue ; 44(8): 4728-4741, 2023 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-37694665

RESUMO

The extensive application of plastic products leads to the increasingly significant harm of plastic wastes to the ecological environment, which is also a focus of global environmental issues. Due to the lack of a sound plastic waste management system, most plastic waste is still treated by the traditional mode or remains in the environment, with low recycling efficiency, and the plastic life cycle has not yet formed. Plastics in the environment will age and degrade under the actions of physical (wear, waves), chemical (ultraviolet radiation, hydrolysis), and biological (fungi, bacteria) factors for a long time and generate micro (nano) plastics. Due to their small particle size, large specific surface area, and charged characteristics, in addition to their own toxicity, they can also be used as carriers or covert carriers of pollutants (heavy metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, bacteria, etc.) to migrate in the environment through runoff, sewage discharge, and hydrometeorology, causing ecological environmental pollution. MPs pollution has been listed as the second largest scientific problem in the field of environmental and ecological science by the United Nations Environment Programme. MPs are widely distributed, and there are different degrees of MPs pollution in the global water (freshwater, ocean), soil, and atmospheric environment. Traces of MPs have also been found in human placentas, human breastmilk, living lungs, and blood in recent years. Therefore, the formation mechanisms of MPs under the actions of physics, chemistry, and microorganisms, as well as their abundance levels and migration characteristics in water, soil, and atmosphere environment were comprehensively reviewed, with the hope of providing reference for monitoring the pollution levels of MPs in the environment, exploring their transport laws in the environment, proposing the management strategy of MPs pollution, and revealing the degradation mechanisms of MPs under different effects.


Assuntos
Microplásticos , Plásticos , Humanos , Feminino , Gravidez , Raios Ultravioleta , Atmosfera , Meio Ambiente
14.
Ying Yong Sheng Tai Xue Bao ; 33(12): 3352-3362, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36601841

RESUMO

To clarify the effects of tillage with mulching on potato yield and soil water and heat characteristics, we conducted a field experiment for two consecutive years in arid region of southern Ningxia. The results showed that tillage depths and mulching materials had significant impacts on soil water storage at 0-100 cm layer during the potato sowing period. The interactive effects of tillage depths and mulching materials were not significant. In 2019, the highest soil water storage was obtained in the subsoiling 30 cm with plastic film mulching, while soil water storage under the subsoiling 40 cm with straw mulch was the highest in 2020. Subsoiling 30 cm with plastic film mul-ching and subsoiling 40 cm with straw mulch significantly increased soil water storage by 16.9% and 33.4% compared with the plowing 15 cm with no mulch (CK), respectively. Tillage depths and mulching materials significantly affected soil water storage in the key growth period of potato. Among the tillage systems, the straw mulching plots and plastic film mulching plots had the strongest effect of soil water conservation. Irrespective of the mulching materials, soil water storage was significantly improved in the subsoiling 30-40 cm plots. Mulching materials and the interaction between tillage depths and mulching materials significantly affected soil effective accumulated temperature at 0-25 cm soil layer after sowing to budding. Among the tillage systems, the plastic film mulching plots significantly increased the average soil effective accumulated temperature by 9.3%, whereas the straw mulching plots significantly reduced the temperature by 18.7%, in comparison with no mulching plots. The highest soil effective accumulated temperature during the whole growth period was obtained in the subsoiling 30 cm with plastic film mulching and subsoiling 40 cm with plastic film mulching treatments in 2019 and 2020. The highest potato tuber yield and economic benefit in 2019 were found in the subsoiling 30 cm with straw mulching treatment, respectively, being 84.6% and 107.9% higher than CK. In 2020, the improvement effect of subsoiling 40 cm with straw mulch on potato tuber yield and economic benefit was the strongest, respectively, which were significantly increased by 81.7% and 105.7%, compared with CK. Tillage depths and mulching materials had significant interactive effects on the water and heat use efficiency of crop. The higher water use efficiency was obtained in the subsoiling 30-40 cm with straw mulch treatments, whereas the accumulated temperature use efficiency was increased significantly under different tillage depths with straw mulching treatments compared with CK. Soil water and effective accumulated temperature during the tuber formation stage were the main factors affecting potato total yield, with stronger effect of soil water than that of soil effective accumulated temperature. Therefore, the treatments of subsoiling 30-40 cm with straw mulch could improve soil moisture and heat condition, and realize potato yield and income increase and efficient use of water and heat resources, which have application and popularization value in dryland potato cultivation of southern Ningxia.


Assuntos
Solo , Solanum tuberosum , Agricultura/métodos , Temperatura , Água/análise , Triticum , Plásticos , China , Zea mays
15.
Chem Pharm Bull (Tokyo) ; 59(5): 559-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21532192

RESUMO

A novel block ionomer complex micelles as drug carrier is developed utilizing self-assemble of poly(ethylene glycol)-block-poly(acrylic acid) (PEG-b-PAA) and cadmium chloride. This micelles are characterized to be have good bio-compatibility, hydrophilicity, passive targeting and sustained slow release property which shows great potential for liver cancer therapy. Block ionomer complex micelles based on PEG-b-PAA and cadmium chloride can self-assemble in distilled water, and Cd(²+) agent is entrapped into the core stabilized by PEG shells. Results showed the block ionomer complex micelles to be spherically shaped. Cadmium was incorporated easily into the ionic core with remarkably high efficiency (34.25% weight (wt)/wt). The cadmium-loaded polymeric micelles exhibited sustained and slow release behavior of cadmium and a potent cytotoxicity against SMMC-7721 in vitro. This novel block ionomer complex micelles with cores of metal antitumor drug indicates to be potential carriers for effective drug delivery.


Assuntos
Acrilatos/farmacologia , Antineoplásicos/farmacologia , Cloreto de Cádmio/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis/farmacologia , Acrilatos/administração & dosagem , Acrilatos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Cloreto de Cádmio/administração & dosagem , Cloreto de Cádmio/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Micelas , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Células Tumorais Cultivadas
16.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(6): 633-641, 2021 Dec 01.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-34859622

RESUMO

OBJECTIVES: To identify the differentially expressed genes (DEGs) during the pathogenesis of periodontitis by bioinformatics analysis. METHODS: GEO2R was used to screen DEGs in GSE10334 and GSE16134. Then, the overlapped DEGs were used for further analysis. g:Profiler was used to perform Gene Ontology analysis and pathway analysis for upregulated and downregulated DEGs. The STRING database was used to construct the protein-protein interaction (PPI) network, which was further visua-lized and analyzed by Cytoscape software. Hub genes and key modules were identified by cytoHubba and MCODE plug-ins, respectively. Finally, transcription factors were predicted via iRegulon plug-in. RESULTS: A total of 196 DEGs were identified, including 139 upregulated and 57 downregulated DEGs. Functional enrichment analysis showed that the upregulated DEGs were mainly enriched in immune-related pathways including immune system, viral protein interaction with cytokine and cytokine receptor, cytokine-cytokine receptor interaction, leukocyte transendothelial migration, and chemokine receptors bind chemokines. On the contrary, the downregulated DEGs were mainly related to the formation of the cornified envelope and keratinization. The identified hub genes in the PPI network were CXCL8, CXCL1, CXCR4, SEL, CD19, and IKZF1. The top three modules were involved in chemokine response, B cell receptor signaling pathway, and interleukin response, respectively. iRegulon analysis revealed that IRF4 scored the highest. CONCLUSIONS: The pathogenesis of periodontitis was closely associated with the expression levels of the identified hub genes including CXCL8, CXCL1, CXCR4, SELL, CD19, and IKZF1. IRF4, the predicted transcription factor, might serve as a dominant upstream regulator.


Assuntos
Perfilação da Expressão Gênica , Periodontite , Biologia Computacional , Humanos , Análise em Microsséries , Mapas de Interação de Proteínas
17.
Environ Sci Pollut Res Int ; 27(15): 18109-18116, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172419

RESUMO

Polyethyleneimine modified activated carbon (PEI-AC) was prepared through a treatment of immersion, and used for the adsorption of formaldehyde. The adsorption capacity of formaldehyde by unmodified AC is 190.1 mg g-1, and the adsorption capacity of formaldehyde can reach to 317.6 mg g-1 after 10 g L-1 of PEI modified, being about 1.67 times than unmodified activated carbon (AC: 191.2 mg g-1). And the 10 g L-1 of PEI modified AC (PAC-30) has the highest adsorption capacity of formaldehyde, reached to 650 mg g-1, with an increasing magnitude of 240% in comparison with that without modified AC. This is mainly due to changes in the pore structure and surface functional groups after modification. However, as the PEI concentration increases, the adsorption performance is inhibited. Through kinetic studies, it was found that all adsorption curves follow the second-order kinetics, and the breakthrough curves follow the Boltzmann model, and the adsorption process can also be described by the intraparticle diffusion model.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Formaldeído , Cinética , Polietilenoimina
18.
ACS Appl Mater Interfaces ; 12(47): 52319-52328, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166112

RESUMO

Glioma is the most prevalent type of malignant brain tumor and is usually very aggressive. Because of the high invasiveness and aggressive proliferative growth of glioma, it is difficult to resect completely or cure with surgery. Residual glioma cells are a primary cause of postoperative recurrence. Herein, we describe a hypoxia-responsive lipid polymer nanoparticle (LN) for fluorescence-guided surgery, chemotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT) combination multitherapy strategies targeting glioma. The hypoxia-responsive LN [LN (DOX + ICG)] contains a hypoxia-responsive component poly(nitroimidazole)25 [P-(Nis)25], the glioma-targeting peptide angiopep-2 (A2), indocyanine green (ICG), and doxorubicin (DOX). LN (DOX + ICG) comprises four distinct functional components: (1) A2: A2 modified nanoparticles effectively target gliomas, enhancing drug concentration in gliomas; (2) P-(Nis)25: (i) the hydrophobic component of LN (DOX + ICG) with hypoxia responsive ability to encapsulate DOX and ICG; (ii) allows rapid release of DOX from LN (DOX + ICG) after 808 nm laser irradiation; (3) ICG: (i) ICG allows imaging-guided surgery, combining PDT and PTT therapies; (ii) upon irradiation with an 808 nm laser, ICG creates a hypoxic environment; (4) DOX inhibits glioma growth. This work demonstrates that LN (DOX + ICG) might provide a novel clinical approach to preventing post-surgical recurrence of glioma.


Assuntos
Doxorrubicina/química , Lipídeos/química , Nanopartículas/química , Polímeros/química , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Raios Infravermelhos , Camundongos , Camundongos Endogâmicos ICR , Peptídeos/química , Peptídeos/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Transplante Heterólogo
19.
Biochem Biophys Res Commun ; 385(3): 369-74, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19464264

RESUMO

Two novel odorant-binding proteins (OBPs) of locust, LmigOBP2 and LmigOBP3 are very different from each other and from the previously reported LmigOBP1 in their amino acid sequences. Moreover, OBP3 contains three additional cysteines, a fact not previously recorded in standard length OBPs. However, these two proteins exhibit remarkably similar binding affinities to a set of organic compounds. Such behaviour is supported by three-dimensional models, showing very similar folding for LmigOBP2 and LmigOBP3, but clearly different for LmigOBP1. Also several amino acid residues lining the binding pockets of the three proteins appear conserved in LmigOBP2 and LmigOBP3, but not in LmigOBP1. Western blot experiments revealed the presence of LmigOBP2 in antennae, mouth parts and cerci, but could not detected LmigOBP3 in any of these tissues. In immunocytochemistry, antibodies against LmigOBP2 strongly stained the outer lymph of sensilla chaetica of the antennae, in contrast with LmigOBP1, previously reported in sensilla basiconica.


Assuntos
Gafanhotos/metabolismo , Receptores Odorantes/metabolismo , Sequência de Aminoácidos , Animais , Gafanhotos/genética , Dados de Sequência Molecular , Conformação Proteica , Receptores Odorantes/química , Receptores Odorantes/genética , Distribuição Tecidual
20.
J Environ Sci (China) ; 21(8): 1089-95, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19862922

RESUMO

Refractory dissolved organic matter (DOM) from landfill leachate treatment plant was with high dissolved organic carbon (DOC) content. An aminated polymeric adsorbent NDA-8 with tertiary amino groups and sufficient mesopore was synthesized, which exhibited high adsorption capacity to the DOM (raw water after coagulation). Resin NDA-8 performed better in the uptake of the DOM than resin DAX-8 and A100. Electrostatic attraction was considered as the decisive interaction between the adsorbent and adsorbate. Special attention was paid to the correlation between porous structure and adsorption capacity. The mesopore of NDA-8 played a crucial role during uptake of the DOM. In general, resin in chloride form performed a higher removal rate of DOC. According to the column adsorption test, total adsorption capacity of NDA-8 was calculated to 52.28 mg DOC/mL wet resin. 0.2 mol/L sodium hydroxide solution could regenerate the adsorbent efficiently.


Assuntos
Polímeros/química , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/química , Adsorção , Aminação , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA