Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Craniofac Surg ; 35(4): 1143-1145, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709070

RESUMO

INTRODUCTION: It is important to generate predictable statistical models by increasing the number of variables on the human skeletal and soft tissue structures on the face to increase the accuracy of human facial reconstructions. The purpose of this study was to determine mouth width 3-dimensionally based on statistical regression model. MATERIAL AND METHODS: Cone-beam computed tomography scan data from 130 individuals were used to measure the horizontal and vertical dimensions of orbital and nasal structures and intercanine width. The correlation between these hard tissue variables and the mouth width was evaluated using the statistical regression model. RESULTS: Orbital width, nasal width, and intercanine width were found to be strong predictors of the mouth width determination and were used to generate the regression formulae to find the most approximate position of the mouth. CONCLUSION: These specific variables may contribute to improving the accuracy of mouth width determination for oral and maxillofacial reconstructions.


Assuntos
Face , Reconstrução Mandibular , Boca , Análise de Regressão , Boca/anatomia & histologia , Boca/diagnóstico por imagem , Face/anatomia & histologia , Face/diagnóstico por imagem , Dente/anatomia & histologia , Dente/diagnóstico por imagem , Olho/anatomia & histologia , Olho/diagnóstico por imagem , Nariz/anatomia & histologia , Nariz/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Humanos
2.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902412

RESUMO

Herein, we present a mussel-inspired supramolecular polymer coating to improve the an-ti-corrosion and self-healing properties of an AZ31B magnesium alloy. A self-assembled coating of polyethyleneimine (PEI) and polyacrylic acid (PAA) is a supramolecular aggregate that takes advantage of the weak interaction of non-covalent bonds between molecules. The cerium-based conversion layers overcome the corrosion problem between the coating and the substrate. Catechol mimics mussel proteins to form adherent polymer coatings. Chains of PEI and PAA interact electrostatically at high density, forming a dynamic binding that causes strand entanglement, enabling the rapid self-healing properties of a supramolecular polymer. The addition of graphene oxide (GO) as an anti-corrosive filler gives the supramolecular polymer coating a superior barrier and impermeability properties. The results of EIS revealed that a direct coating of PEI and PAA accelerates the corrosion of magnesium alloys; the impedance modulus of a PEI and PAA coating is only 7.4 × 103 Ω·cm2, and the corrosion current of a 72 h immersion in a 3.5 wt% NaCl solution is 1.401 × 10-6 Ω·cm2. The impedance modulus of the addition of a catechol and graphene oxide supramolecular polymer coating is up to 3.4 × 104 Ω·cm2, outperforming the substrate by a factor of two. After soaking in a 3.5 wt% NaCl solution for 72 h, the corrosion current is 0.942 × 10-6 A/cm2, which is superior to other coatings in this work. Furthermore, it was found that 10-micron scratches were completely healed in all coatings within 20 min, in the presence of water. The supramolecular polymer offers a new technique for the prevention of metal corrosion.


Assuntos
Magnésio , Cloreto de Sódio , Magnésio/química , Polímeros/química , Ligas/química
3.
Mol Biol Rep ; 49(12): 11327-11340, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35906509

RESUMO

BACKGROUND: Carbon monoxide (CO) has been reported to be participated in adventitious rooting. However, knowledge about the interrelationship between CO and phytohormones during rooting is obscure. The molecular mechanism of CO-induced rooting is currently unclear. METHODS AND RESULTS: The roles of CO in adventitious rooting in Cucumis sativus L. at the transcriptional level were investigated. The results show that 10 µM hematin (a CO donor) has a significant positive effect on adventitious rooting in cucumber. A total of 1792 differentially expressed genes (DEGs; 1103 up-regulated and 689 down-regulated) were identified in hematin treatment by RNA sequencing analysis. There were 37, 18 and 19 DEGs significantly enriched in plant hormone signal transduction, sucrose and starch metabolism, and phenylalanine metabolism, respectively. Both transcriptome and real-time quantitative PCR results showed that the expressions of AUX22D, IAA6, SAUR21, SAUR24, GH3.5, CYCD3-3, TIFY10a, TIFY10A and TIF9 promoted the accumulation of IAA, BR, JA and SA in plant hormone signal transduction. The up-regulation of HK3, TPPF, otsB, TPS7, TPS9 and the down-regulation of AGPS1, AGPS3 increased the content of starch and total sugar by mediating the activity of some critical enzymes, including HK, TPS, TPP and AGP. PER47, PER61, PER24, PER66, PER4 and CCR2 increased the lignin content. CONCLUSION: Our results suggest that CO could promote the accumulation of plant hormones, starch, sugar and lignin during adventitious rooting by regulating the expression of some related genes, including AUX22D, IAA6, SAUR21, SAUR24, GH3.5, CYCD3-3, TIFY10a, TIFY10A, TIF9 HK3, otsB, TPS7, TPS9, AGPS1, AGPS3, PER47, PER61, PER24, PER66, PER4, and CCR2. Thus, we provides an interesting candidate gene list for further studies on the molecular mechanisms of adventitious rooting.


Assuntos
Cucumis sativus , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Lignina/metabolismo , Perfilação da Expressão Gênica , Açúcares/metabolismo , Amido/metabolismo
4.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973222

RESUMO

High-temperature carbonisation is used to prepare many traditional Chinese medicine charcoal drugs, but the bioactive haemostatic substances of these medicines and their mechanisms are still unknown. This study developed and evaluated nanoparticles (NPs) derived from Selaginella pulvinate Carbonisata (STC) for the first time. The haemostatic effect of STC-NPs prepared at 300, 350, and 400 °C were investigated in mouse tail amputation and liver scratch experiments. STC-NPs obtained at 400 °C had the strongest haemostatic effect, and were accordingly characterised by ultraviolet-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, high resolution transmission electron microscopy, X-ray diffractometry, and X-ray photoelectron spectroscopy. STC-NPs averaged 1.4-2.8 nm and exhibited a quantum yield of 6.06% at a maximum excitation wavelength of 332 nm and emission at 432 nm. STC-NPs displayed low toxicity against mouse monocyte macrophage RAW 264.7 cells by CCK-8 assay, and STC-NP treatment significantly shortened bleeding time in rat and mouse models. Coagulation assays showed that the haemostatic effects of STC-NPs were related to improving the fibrinogen and platelet contents, as well as decreasing the prothrombin time that resulted from stimulating extrinsic blood coagulation and activating the fibrinogen system. The STC-NPs had remarkable haemostatic effects in the tail amputation and liver scratch models; these effects may be associated with the exogenous coagulation pathway and activation of the brinogen system, according to the evaluation of the mouse coagulation parameters. This novel evaluation supports the material basis of STC use in traditional Chinese medicine, and this article is worthy of study by authors of clinical pharmacy.


Assuntos
Materiais Biocompatíveis/farmacologia , Hemostáticos/farmacologia , Nanopartículas/química , Selaginellaceae/química , Animais , Coagulação Sanguínea/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Camundongos , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Células RAW 264.7 , Ratos , Temperatura
5.
Appl Environ Microbiol ; 77(1): 48-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21057022

RESUMO

Fungus-growing termites play an important role in lignocellulose degradation and carbon mineralization in tropical and subtropical regions, but the degradation potentiality of their gut microbiota has long been neglected. The high quality and quantity of intestinal microbial DNA are indispensable for exploring new cellulose genes from termites by function-based screening. Here, using a refined intestinal microbial DNA extraction method followed by multiple-displacement amplification (MDA), a fosmid library was constructed from the total microbial DNA isolated from the gut of a termite growing in fungi. Functional screening for endoglucanase, cellobiohydrolase, ß-glucosidase, and xylanase resulted in 12 ß-glucosidase-positive clones and one xylanase-positive clone. The sequencing result of the xylanase-positive clone revealed an 1,818-bp open reading frame (ORF) encoding a 64.5-kDa multidomain endo-1,4-ß-xylanase, designated Xyl6E7, which consisted of an N-terminal GH11 family catalytic domain, a CBM_4_9 domain, and a Listeria-Bacteroides repeat domain. Xyl6E7 was a highly active, substrate-specific, and endo-acting alkaline xylanase with considerably wide pH tolerance and stability but extremely low thermostability.


Assuntos
Celulases/genética , Isópteros/microbiologia , Metagenoma , Animais , Biblioteca Gênica , Lignina/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência
6.
Carbohydr Polym ; 264: 118033, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910743

RESUMO

Attributed to low cost, renewable, and high availability, cellulose-based aerogels are desirable materials for various applications. However, mechanical robustness and functionalization remain huge challenges. Herein, we synthesized a recoverable, anisotropic cellulose nanofiber (CNF) / chitosan (CS) aerogel via directional freeze casting and chemical cross-link process. The chitosan was performed as strength polymers to prohibits the shrinkage and retains the structural stability of 3D cellulose nanofiber skeleton, endowing the composite aerogel with satisfactory deformation recovery ability (without loss under 60 % stress cycled 100 times). The CNF/CS composite aerogel has ultralow density (∼8.4 mg/cm3), high temperature-invariant (above 300 °C) and high porosity (98 %). The CNF/CS aerogel demonstrates anisotropic thermal insulation properties with low thermal conductivity (28 mWm-1 K-1 in rational direction and 36 mW m-1 K-1 in the axial direction). Moreover, the composite aerogel (water contact angle ∼148°) exhibited outstanding oil/water selectivity and high absorption capacity (82-253 g/g) for various oils and organic solvents. Therefore, the multifunctional CNF/CS composite aerogels are potential materials for thermal management and oil absorption applications.


Assuntos
Celulose/química , Quitosana/química , Géis/química , Nanofibras/química , Anisotropia , Humanos , Óleos/química , Fenômenos Físicos , Porosidade , Solventes , Temperatura , Condutividade Térmica , Água/química
7.
Biosens Bioelectron ; 190: 113421, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34134070

RESUMO

Early diagnosis and monitoring of SARS-CoV-2 virus is essential to control COVID-19 outbreak. In this study, we propose a promising surface enhanced Raman scattering (SERS)-based COVID-19 biosensor for ultrasensitive detection of SARS-CoV-2 virus in untreated saliva. The SERS-immune substrate was fabricated by a novel oil/water/oil (O/W/O) three-phase liquid-liquid interfaces self-assembly method, forming two layers of dense and uniform gold nanoparticle films to ensure the reproducibility and sensitivity of SERS immunoassay. The detection was performed by an immunoreaction between the SARS-CoV-2 spike antibody modified SERS-immune substrate, spike antigen protein and Raman reporter-labeled immuno-Ag nanoparticles. This SERS-based biosensor was able to detect the SARS-CoV-2 spike protein at concentrations of 0.77 fg mL-1 in phosphate-buffered saline and 6.07 fg mL-1 in untreated saliva. The designed SERS-based biosensor exhibited excellent specificity and sensitivity for SARS-CoV-2 virus without any sample pretreatment, providing a potential choice for the early diagnosis of COVID-19.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Ouro , Humanos , Reprodutibilidade dos Testes , SARS-CoV-2 , Saliva , Glicoproteína da Espícula de Coronavírus
8.
Ann Transl Med ; 9(6): 460, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33850857

RESUMO

BACKGROUND: Due to the special anatomy morphology and physiological function of the mandible, it has always become a challenge to accurately reconstruct the mandibular defect in maxillofacial surgery. Digital three dimensions (3D) printing surgical guide, as the effective method for individual and accurate surgery, is a hotspot of clinical research at present. In this study, 3D printing PLA surgical guide plate was applied to reconstruct the mandibular defect with fibula flap, its clinical effect and accuracy were evaluated, which aimed to improve the accurate reconstruction of mandibular defects. METHODS: After sterilization, the dimension deformation of the PLA standard specimen were measured. Eighteen patients diagnose with mandibular tumor were collected as observation objects. Then partial mandible resection and simultaneous mandible reconstruction with fibula graft were implemented according to the computer-aided design plan. The clinical effects of 3D printing PLA guide plates application were evaluated by facial contours, occlusal stability and chewing function. Through registering the postoperative computed images reconstruction with preoperative designed shape, the reconstruction accuracy was evaluated by detecting the maximum difference including the distance between lateral convex point of the condyles, the distance between medial convex point of the condyles and the horizontal contained angle between long axis of the condyles. RESULTS: After high temperature steam sterilization, the curvature of the PLA specimen with 100% filling rate and 4.8 mm thickness were the smallest and their dimension deformation had no statistical significance (P>0.05). The minimally deformed 3D printing PLA guide plate were smoothly placed in the right place during the operation. After surgery, the face was symmetrical, the occlusal relationship was restored well and no deviation of the mandibular movement were found. The spiral computed tomography (SCT) scanning showed that the distance between lateral/medial convex points of the condyle and the horizontal contained angle were 128.34±8.68 mm, 88.69±6.75 mm and 145.87°±12.01°. Compared with preoperative design, the maximum deviation of the actual postoperative registration was 1.67±0.63, and the difference was not statistically significant (P>0.05). CONCLUSIONS: The application of 3D printing PLA guide plate in the segmental section and reconstruction of the mandible can effectively simplify the operation, and better reconstruct the continuity of the mandible. The surgical accuracy can fully meet clinical needs with relatively low prices.

9.
Int J Biol Macromol ; 154: 1050-1073, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32201207

RESUMO

Recently, environmental and ecological concerns are increasing due to the usage of petroleum-based products so the synthesis of ultra-fine chemicals and functional materials from natural resources is drawing a tremendous level of attention. Nanocellulose, a unique and promising natural material extracted from native cellulose, may prove to be most ecofriendly materials that are technically and economically feasible in modern times, minimizing the pollution generation. Nanocellulose has gained tremendous attention for its use in various applications, due to its excellent special surface chemistry, physical properties, and remarkable biological properties (biodegradability, biocompatibility, and non-toxicity). Various types of nanocellulose, viz. cellulose nanofibrils (CNFs), cellulose nanocrystals (CNCs), and bacterial nanocellulose (BNC), are deeply introduced and compared in this work in terms of sources, production, structures and properties. The metal and metal oxides especially zinc oxide nanoparticles (ZnO-NPs) are broadly used in various fields due to the diversity of functional properties such as antimicrobial and ultraviolet (UV) properties. Thus, the advancement of nanocellulose and zinc oxide nanoparticles (ZnO-NPs)-based composites materials are summarized in this article in terms of the preparation methods and remarkable properties with the help of recent knowledge and significant findings (especially from the past six years reports). The nanocellulose materials complement zinc oxide nanoparticles, where they impart their functional properties to the nanoparticle composites. As a result hybrid nanocomposite containing nanocellulose/zinc oxide composite has shown excellent mechanical, UV barrier, and antibacterial properties. The nanocellulose based hybrid nanomaterials have huge potential applications in the area of food packaging, biopharmaceuticals, biomedical, and cosmetics. Thus the functional composite materials containing nanocellulose and zinc oxide will determine the potential biomedical application for nanocellulose.


Assuntos
Materiais Biocompatíveis , Celulose/química , Nanocompostos , Óxido de Zinco/química , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Embalagem de Alimentos , Hidrogéis/síntese química , Hidrogéis/química
10.
J Nanosci Nanotechnol ; 20(3): 1504-1510, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492313

RESUMO

This research has been accomplished using the advanced selective laser melting (SLM) technique as well as HIP post-treatment in order to improve mechanical properties and biocompatibility of Mg- Ca-Sr alloy. Through this research it becomes clearly noticeable that the Mg-1.5Ca-xSr (x = 0.6, 2.1, 2.5) alloys with Sr exhibited better mechanical properties and corrosion potentials. This is more particular with the Mg-1.5Ca-2.5Sr alloy after HIP post-treatment allowing it to provide a desired combination of degradation and mechanical behavior for orthopedic fracture fixation during a desired treatment period. In vivo trials, there was a clear indication and exhibition that this Mg-1.5Ca-2.5Sr alloy screw can completely dissolve in miniature pig's body which leads to an acceleration in growth of bone tissues. Mg-Ca-Sr alloy proved potential candidate for use in orthopedic fixation devices through Our results concluded that Mg-Ca-Sr alloy are potential candidate for use in orthopedic fixation devices through mechanical strength and biocompatibility evaluations (in vitro or In vivo).


Assuntos
Implantes Absorvíveis , Ligas , Parafusos Ósseos , Corrosão , Teste de Materiais
11.
Viral Immunol ; 32(4): 170-178, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31063043

RESUMO

Hand, foot, and mouth disease (HFMD) is a common infection for children younger than the age of five. HFMD is mainly induced by coxsackievirus A16 and enterovirus 71 (EV71). EV71-associated HFMD often has serious neurological disease complications. The purpose of this study was to reveal the mechanisms of action of EV71 on neurons. SH-SY5Y cells transfected or untransfected with EV71 were sequenced. After data preprocessing, differentially expressed genes (DEGs) were screened using the limma package in R, and clustering analysis was then performed using the ComplexHeatmap package in R. The DAVID tool was used for EDG enrichment analysis. Protein-protein interactions (PPIs) were predicted using the STRING database and PPI networks were then constructed using Cytoscape software. After pathways involved in the key PPI network nodes were enriched, pathway deviation scores were calculated. Clustering analysis was also conducted for these pathways. There were 978 DEGs in the transfected samples. Upregulated TNF was enriched in NF-kappa B signaling pathway. Among the top 20 nodes in the PPI network, CDK1, STAT3, CCND1, TNF, and MYC had the highest degrees. A total of 28 pathways were enriched for the top 20 nodes, including Epstein-Barr virus infection (p = 3.78E-06), proteoglycans in cancer (p = 4.96E-06), and melanoma (p = 1.99E-05). In addition, clustering analysis showed that these pathways could clearly differentiate the two groups of samples. EV71 may affect neurons by mediating CDK1, STAT3, CCND1, TNF, and MYC, indicating that these genes are promising targets for preventing the neuronal complications of HFMD.


Assuntos
Enterovirus Humano A/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Neurônios/virologia , Análise de Sequência de RNA , Linhagem Celular , Biologia Computacional , Redes Reguladoras de Genes , Humanos , Mapas de Interação de Proteínas
12.
Waste Manag ; 82: 139-146, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30509575

RESUMO

A large amount of accumulated waste cotton fabrics (WCFs) have caused environmental problem and depletion of resources. The extraction of microcrystalline cellulose as value-added products is one of the effective ways to the recycling of WCFs. This study aimed to extract microcrystalline cellulose from WCFs by the hydrothermal method and compare the extracted microcrystalline cellulose (EMC) with Avicel PH101 microcrystalline cellulose (MCC). The EMC was extracted under hydrothermal conditions (solid-liquid ratio 1:30, HCl concentration 0.6 mol/L, 150 °C, 100 min), with a yield and the degree of polymerization of 85.54% and 228, respectively. The samples were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nuclear magnetic resonance, thermogravimetric analysis and contact angle testing. The detailed analyses showed that the properties of EMC prepared from WCFs are similar to those of commercial MCC. The results indicated that WCFs is a critical and potential low-cost raw material to prepare MCC.


Assuntos
Celulose , Têxteis , Polimerização , Difração de Raios X
13.
PLoS One ; 10(7): e0131696, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26148185

RESUMO

We aimed to investigate whether 1-deoxynojirimycin (DNJ) modulates glycometabolism and has toxicity in Eri silkworm (Samia cynthia ricini, Saturniidae). In this paper, hemolymph metabolites were used to explore metabolic changes after oral administration of DNJ or mulberry latex and to characterize the biological function of DNJ at the metabolic and systemic levels. Hemolymph samples were collected from fourth-instar larvae of Eri silkworm and ex-vivo high-resolution 1H nuclear magnetic resonance (NMR) spectra were acquired from the collected hemolymph samples. Then the obtained spectra were analyzed by principal component analysis (PCA) and independent-samples t-test. Metabolic pattern recognition analysis of hemolymph samples indicated that the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) were significantly different from the control group. Moreover, compared to the control group, the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) showed the decreased levels of citrate, succinate, fumarate, malate, and glutamine in hemolymph, the groups of 0.25% DNJ and the mixture of 0.5% DNJ and latex (1:1) showed the increased levels of trehalose and lactate. In addition, mulberry leaves exude latex was highly toxic to Eri silkworm because rich unidentified high-molecular-weight factor (s) acted as toxic substances. In our results, latex caused 20 deaths among 50 fourth-instar larvae of Eri silkmoth, but DNJ or the mixture did not caused death. All these results suggest that DNJ has a positive impact on the reverse glycometabolism by modulating glycometabolism and inhibiting glucogenesis and energy metabolism. DNJ is a secure substance as a single-ingredient antidiabetic medicine due to its nontoxicity and bioactivity.


Assuntos
1-Desoxinojirimicina/farmacologia , Bombyx/efeitos dos fármacos , Bombyx/metabolismo , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Administração Oral , Animais , Larva/efeitos dos fármacos , Larva/metabolismo , Látex/farmacologia , Metabolômica/métodos , Morus/química , Folhas de Planta/química , Espectroscopia de Prótons por Ressonância Magnética/métodos
14.
Eur J Pharm Biopharm ; 88(1): 194-206, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769065

RESUMO

To develop convenient, effective cold chain-free subunit vaccines, a mannose-PEG-cholesterol conjugate (MPC) was synthesized as a lectin binding molecule and anchored onto liposomes which entrapped lipid A and model antigen to form a vaccine adjuvant-delivery system targeting antigen presenting cells. With MPC, soy phosphatidylcholine, stearylamine and monophosphoryl lipid A as emulsifiers dissolved in oil phase (O), and sucrose and BSA in water phase (W), the O/W emulsions were prepared and subsequently lyophilized. The lyophilized product was stable enough to be stored at room temperature and, upon rehydration, formed MPC-/lipid A-liposomes (MLLs) with a size under 300 nm and antigen association rates of around 36%. The MLLs given to mice via oral mucosal (o.m.) administration showed no side effects but induced potent immune responses as evidenced by the high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. High levels of IgG2a and IFN-γ in treated mice revealed that MLLs via o.m. vaccination induced a mixed Th1/Th2 response against antigens, establishing both humoral and cellular immunity. Thus, the MLLs may be a potent cold chain-free oral mucosal vaccine adjuvant-delivery system.


Assuntos
Lipídeo A/química , Lipossomos/química , Manose/química , Mucosa Bucal/metabolismo , Vacinas/química , Adjuvantes Imunológicos/química , Administração Oral , Animais , Cátions , Sobrevivência Celular , Colesterol/química , Citocinas/metabolismo , Emulsões , Imunidade Celular/efeitos dos fármacos , Imunoglobulina G/química , Interferon gama/metabolismo , Lipídeos/química , Linfócitos/citologia , Camundongos , Mucosa Bucal/efeitos dos fármacos , Mucosa/patologia , Fagocitose , Polietilenoglicóis/química , Soroalbumina Bovina/química , Baço/efeitos dos fármacos , Temperatura
15.
PLoS One ; 8(7): e69184, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874908

RESUMO

Macrotermitinae (fungus-cultivating termites) are major decomposers in tropical and subtropical areas of Asia and Africa. They have specifically evolved mutualistic associations with both a Termitomyces fungi on the nest and a gut microbiota, providing a model system for probing host-microbe interactions. Yet the symbiotic roles of gut microbes residing in its major feeding caste remain largely undefined. Here, by pyrosequencing the whole gut metagenome of adult workers of a fungus-cultivating termite (Odontotermes yunnanensis), we showed that it did harbor a broad set of genes or gene modules encoding carbohydrate-active enzymes (CAZymes) relevant to plant fiber degradation, particularly debranching enzymes and oligosaccharide-processing enzymes. Besides, it also contained a considerable number of genes encoding chitinases and glycoprotein oligosaccharide-processing enzymes for fungal cell wall degradation. To investigate the metabolic divergence of higher termites of different feeding guilds, a SEED subsystem-based gene-centric comparative analysis of the data with that of a previously sequenced wood-feeding Nasutitermes hindgut microbiome was also attempted, revealing that SEED classifications of nitrogen metabolism, and motility and chemotaxis were significantly overrepresented in the wood-feeder hindgut metagenome, while Bacteroidales conjugative transposons and subsystems related to central aromatic compounds metabolism were apparently overrepresented here. This work fills up our gaps in understanding the functional capacities of fungus-cultivating termite gut microbiota, especially their roles in the symbiotic digestion of lignocelluloses and utilization of fungal biomass, both of which greatly add to existing understandings of this peculiar symbiosis.


Assuntos
Fungos/metabolismo , Intestinos/microbiologia , Isópteros/fisiologia , Metagenômica , Animais , Sequência de Bases , Primers do DNA , Isópteros/metabolismo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA