Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tissue Cell ; 76: 101781, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35279604

RESUMO

OBJECTIVE(S): Mandibular condyle chondrocytes (MCCs) are exposed to various mechanical environments. Primary cilia, as a carrier for ion channels, can sense mechanical signals. Intraflagellar transport protein 88 (IFT88) is crucial for the assembly and function of primary cilia. Piezo1 is a mechanically activated ion channel that mediates mechanical signal transduction. This study aimed to identify the possible synergistic effect between Piezo1 and IFT88 in MCC differentiation during mechanical conduction. MATERIALS AND METHODS: Confocal immunofluorescence staining was used to reveal the Piezo1 localization. Small interfering RNA (siRNA) technology was used to knock down the expression levels of Piezo1 and IFT88. The chondrogenic differentiation ability of MCCs was evaluated by Alcian blue staining, and the early differentiation ability was evaluated by Western blot of SOX9 and COL2A1. RESULTS: Confocal immunofluorescence results showed that Piezo1 localized in the root of primary cilia. Without cyclic tensile strain (CTS) stimuli, Alcian blue staining showed that Piezo1 knockdown had a marginal effect on the chondrogenic differentiation of MCCs, while IFT88 knockdown inhibited the chondrogenic differentiation. The protein levels of SOX9 and COL2A1 decreased significantly with CTS stimuli. However, these protein levels were restored when Piezo1 was knocked down. In addition, IFT88 knockdown decreased the protein level of Piezo1 with or without CTS. CONCLUSION: Piezo1 and IFT88 might play a synergistic role in regulating MCC differentiation under CTS stimuli.


Assuntos
Condrócitos , Côndilo Mandibular , Azul Alciano/metabolismo , Azul Alciano/farmacologia , Condrócitos/metabolismo , Condrogênese/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Canais Iônicos/farmacologia , Côndilo Mandibular/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
2.
ACS Appl Bio Mater ; 3(9): 6131-6144, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021746

RESUMO

This paper is a continued study on laser cleaning removal of marine microbiofouling from Al alloy surfaces. According to our previous study, it is noted that the antifouling functions of the generated laser-cleaned metallic surfaces must be highlighted. In this work, the inhibition effectiveness of the laser-cleaned Al alloy surfaces was evaluated using a type of vital marine microorganism, sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans subsp. desulfuricans, in a dynamic bacterial solution. Before the immersion tests, the laser-cleaned surfaces with nanostructures were chemically processed into superhydrophilic, superhydrophobic, and ultraslippery surfaces. SRB attachment behaviors as well as inhibition mechanisms of the three surfaces to the SRB settlement were characterized and revealed. The SRB adhering to the above surfaces presented three different morphologies, i.e., broken, dented, and plump cells. Superhydrophilic surfaces unexpectedly showed a not inferior antibacterial ability. A piercing effect of the nanostructures caused nontoxic mechanical damage to the cell membranes. The antiadhesion property of superhydrophobic solid-air hybrid surfaces was unreliable due to the loss of air bubbles. The morphology of the last surviving SRB cells left on the ultraslippery surfaces was basically plump. The stable repellent function of the surfaces was responsible for the vigorous prevention of the adhesion of the SRB. The research results offer an insight into the antibacterial/antiadhesion properties of the laser-cleaned surfaces and a practical value for the periodic service of marine high-end equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA