Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Nanosci Nanotechnol ; 18(8): 5252-5255, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458574

RESUMO

Thermo-sensitive hydrogels which could encapsulate cells and provide a three dimensional (3D) microenvironment have great potential in building new cell culture models in vitro. In this study, a thermal responsive hydrogel based on PLGA-PEG-PLGA tri-block copolymers was developed as matrix for 3D ovarian cancer cell culturing. The gelation of PLGA-PEG-PLGA tri-block copolymer was concentration-dependent. SEM images showed the pores were suitable for the formation of 3D cell structures. Cell morphological results showed that large aggregates of ovarian cancer cells (HO8910) were formed after cultured for 10 days. Therefore, hydrogel based on PLGA-PEG-PLGA tri-block copolymers hold potential as in vitro cell culture matrix for ovarian cancer cells.


Assuntos
Hidrogéis , Neoplasias Ovarianas/tratamento farmacológico , Polietilenoglicóis , Poliglactina 910 , Feminino , Humanos , Células Tumorais Cultivadas
2.
Int J Biol Macromol ; 255: 128288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992924

RESUMO

Tissue adhesives have attracted intense and increasing interest due to their multiple biomedical applications. Despite the rapid development of adhesive hydrogels, huge challenges remain for materials that can ensure strong adhesion and seal hemostasis in aqueous and blood environments. To address this issue, we have developed an innovative design of PAA-based coacervate hydrogel with strong wet adhesion capability through a simple mixture of PAA copolymers with oxidized-carboxymethylcellulose (OCMC), and tannic acid (TA) as the main components, and structurally enhanced with natural clays (Laponite XLG). The absorbed TA provides solid adhesion to dry and wet substrates via multiple interactions, which endows the XLG-enhanced coacervate with the desired underwater adhesive strength. More importantly, the dielectric constant is introduced to evaluate the polarity of the tested samples, which may be used as guidance for the design of mussel-inspired adhesives with even better underwater adhesive properties. In vivo hemorrhage experiments further confirmed that the hydrogel adhesive dramatically shortened the hemostatic time to tens of seconds. Overall, the persistent adhesion and acceptable cytocompatibility of the hydrogel nanocomposite make it a promising alternative suture-free approach for rapid hemostasis at different length scales and is expected to be extended to clinical application for other organ injuries.


Assuntos
Hidrogéis , Adesivos Teciduais , Humanos , Hidrogéis/química , Carboximetilcelulose Sódica , Adesivos/química , Adesivos Teciduais/química , Aderências Teciduais , Hemostasia
3.
Adv Healthc Mater ; 13(7): e2302538, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38176693

RESUMO

Hydrogel adhesives with integrated functionalities are still required to match their ever-expanding practical applications in the field of tissue repair and regeneration. A simple and effective safety strategy is reported, involving an in situ injectable polymer precursor and visible light-induced cross-linking. This strategy enables the preparation of a hydrogel adhesive in a physiological environment, offering wet adhesion to tissue surfaces, molecular flexibility, biodegradability, biocompatibility, efficient hemostatic performance, and the ability to facilitate liver injury repair. The proposed one-step preparation process of this polymer precursor involves the mixing of gelatin methacryloyl (GelMA), poly(thioctic acid) [P(TA)], poly(acrylic acid)/amorphous calcium phosphate (PAAc/ACP, PA) and FDA-approved photoinitiator solution, and a subsequent visible light irradiation after in situ injection into target tissues that resulted in a chemically-physically cross-linked hybrid hydrogel adhesive. Such a combined strategy shows promise for medical scenarios, such as uncontrollable post-traumatic bleeding.


Assuntos
Hemostáticos , Hidrogéis , Hidrogéis/farmacologia , Adesivos , Gelatina/farmacologia , Polímeros , Luz
4.
Int J Biol Macromol ; 270(Pt 1): 132061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705326

RESUMO

Polypropylene (PP) mesh is the most widely used prosthetic material in hernia repair. However, the efficacy of implanted PP mesh is often compromised by adhesion between viscera and PP mesh. Thus, there is a recognized need for developing an anti-adhesive PP mesh. Here, a composite hydrogel coated PP mesh with the prevention of adhesion after hernia repair was designed. The composite hydrogel coating was prepared from polyvinyl alcohol (PVA) and hyaluronic acid (HA) by using the freezing-thawing (FT) method. To overcome the shortcoming of the long time of the traditional freezing-thawing method, a small molecule 3,4-dihydroxyphenylacetic acid (DHPA) was introduced to promote the formation of composite hydrogel. The as-prepared composite hydrogel coating displayed modulus more closely resembling that of native abdominal wall tissue. In vitro studies illustrated that the resulting meshes showed excellent coating stability, hemocompatibility, and non-cytotoxicity. In vivo experiments using a rat abdominal wall defect model demonstrated that the composite hydrogel coated PP mesh could prevent the formation of adhesion, alleviate the inflammatory response, and reduce the deposition of collagen around the damaged tissue. These disclosed results manifested that the PP mesh coated with HA/PVA composite hydrogel might be a promising application in preventing adhesion for hernia repair.


Assuntos
Ácido Hialurônico , Polipropilenos , Álcool de Polivinil , Telas Cirúrgicas , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Álcool de Polivinil/química , Animais , Polipropilenos/química , Ratos , Aderências Teciduais/prevenção & controle , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Parede Abdominal/cirurgia , Humanos , Ratos Sprague-Dawley , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Teste de Materiais , Herniorrafia/métodos
5.
Colloids Surf B Biointerfaces ; 223: 113159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736174

RESUMO

Polypropylene (PP) mesh has been widely used in hernia repair as prosthesis material owing to its excellent balanced biocompatibility and mechanical properties. However, abdominal adhesion between the visceral and PP mesh is still a major problem. Therefore, anti-adhesive PP mesh was designed with poly(vinyl alcohol) (PVA) hydrogel and liposomes drug delivery system. First, PVA hydrogel coating was formed on the surface of PP mesh with freezing-thawing processing cycles (FTP). Subsequently, the lyophilized PVA10-c-PP was immersed in rapamycin (RPM)-loaded liposome solution until swelling equilibrated to obtain the anti-adhesion mesh RPM@LPS/PVA10-c-PP. It was demonstrated that the hydrogel coating can stably fix on the surface of PP mesh even after immersed in PBS solution at 37 °C or 40 °C for up to 30 days. In vitro cell tests revealed the excellent cytocompatibility and the potential to inhibit cell adhesion of the modified PP mesh. Moreover, the anti-adhesive effects of the RPM@LPS/PVA10-c-PP mesh was evaluated through in vivo experiments. The RPM@LPS/PVA10-c-PP mesh exhibited less adhesion than original PP mesh throughout the duration of implantation. At 30 days, the adhesion score of RPM@LPS/PVA10-c-PP mesh was 1.37 ± 0.75, however the original PP was 3 ± 0.71. Furthermore, the results of H&E and Masson trichrome staining proved that the RPM@LPS/PVA10-c-PP mesh showed slighter inflammation response and significant looser fibrous tissue surrounded the PP filaments as compared to the native PP. The current findings manifested that this type of RPM@LPS/PVA10-c-PP might be a potential candidate for anti-adhesion treatment. DATA AVAILABILITY: Data will be made available on request.


Assuntos
Lipossomos , Polipropilenos , Humanos , Hidrogéis , Telas Cirúrgicas , Lipopolissacarídeos , Hérnia , Sistemas de Liberação de Medicamentos
6.
Int J Biol Macromol ; 242(Pt 3): 124885, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196725

RESUMO

Although injectable hydrogels with minimally invasive delivery have garnered significant interest, their potential applications have been restricted by a singular property. In this study, a supramolecular hydrogel system with improved adhesion was constructed through host-guest interactions between alginate and polyacrylamide. The maximum tensile adhesion strength between the ß-cyclodextrin and dopamine-grafted alginate/adamantane-grafted polyacrylamide (Alg-ßCD-DA/PAAm-Ad, namely AßCDPA) hydrogels and pigskin reached 19.2 kPa, which was 76 % stronger than the non-catechol-based control hydrogel (ß-cyclodextrin-grafted alginate/adamantane-grafted polyacrylamide, Alg-ßCD/PAAm-Ad). Moreover, the hydrogels demonstrated excellent self-healing, shear-thinning, and injectable properties. The required pressure to extrude the AßCDPA2 hydrogel from a 16G needle at a rate of 2.0 mL/min was 67.4 N. As the polymer concentration and adamantane substitution degree increased, the hydrogels exhibited higher modulus, stronger network structure, and lower swelling ratio and degradation rate. Encapsulating and culturing cells within these hydrogels demonstrated good cytocompatibility. Therefore, this hydrogel can serve as a viscosity extender or bioadhesive, and as a carrier material to deliver encapsulated therapeutic substances into the body through minimally invasive injection methods.


Assuntos
Resinas Acrílicas , Alginatos , Hidrogéis , Adesivos Teciduais , Resistência à Tração , Humanos , Células Endoteliais da Veia Umbilical Humana , Animais , Camundongos , Células L , Linhagem Celular Tumoral
7.
ACS Biomater Sci Eng ; 8(6): 2428-2436, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35588538

RESUMO

Common poly(lactide-co-glycolide) (i-PLGA) has emerged as a biodegradable and biocompatible material in tissue engineering. However, the poor hydrophilicity and elasticity of i-PLGA lead to its limited application in tissue engineering. To this end, an amphiphilic crosslinked four-armed poly(lactic-co-glycolide) was prepared. First, four-armed PLGA (4A-PLGA) was synthesized by polymerizing l-lactide (LA) and glycolide (GA) with pentaerythritol as the initiator. Then, the hydrophilic polymer poly(glutamate propylene ester) (PGPE) was prepared through the esterification of glutamic acid and 1,2-propanediol. The hydrophilic 4A-PLGA-PGPE was finally synthesized through the condensation reaction of 4A-PLGA and PGPE with the aid of triphosgene. 4A-PLGA-PGPE was then used to prepare amphiphilic membranes by electrospinning. It was demonstrated that the mechanical properties and biocompatibility of 4A-PLGA were improved after the introduction of PGPE. Furthermore, the introduction of glutamate improved the hydrophilicity of 4A-PLGA, thus effectively promoting cell entry and adhesion, which makes the electrospun 4A-PLGA-PGPE membranes promising for tissue engineering.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/farmacologia , Adesão Celular , Glutamatos , Polímeros/farmacologia
8.
ACS Appl Mater Interfaces ; 14(19): 21822-21835, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35510352

RESUMO

Prevention of Alzheimer's disease (AD) is a global imperative, but reliable early interventions are currently lacking. Microglia-mediated chronic neuroinflammation is thought to occur in the early stage of AD and plays a critical role in AD pathogenesis. Here, oxytocin (OT)-loaded angiopep-2-modified chitosan nanogels (AOC NGs) were designed for early treatment of AD via inhibiting innate inflammatory response. Through the effective transcytosis of angiopep-2, AOC NGs were driven intravenously to cross the blood-brain barrier, enter the brain, and enrich in brain areas affected by AD. A large amount of OT was then released and specifically bound to the pathological upregulated OT receptor, thus effectively inhibiting microglial activation and reducing inflammatory cytokine levels through blocking the ERK/p38 MAPK and COX-2/iNOS NF-κB signaling pathways. Consecutive weekly intravenous administration of AOC NGs into 12-week-old young APP/PS1 mice, representing the early stage of AD, remarkably slowed the progression of Aß deposition and neuronal apoptosis in the APP/PS1 mice as they aged and ultimately prevented cognitive impairment and delayed hippocampal atrophy. Together, the findings suggest that AOC NGs, which show good biosafety, can serve as a promising therapeutic candidate to combat neuroinflammation for early prevention of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Nanogéis , Ocitocina/farmacologia , Ocitocina/uso terapêutico
9.
Biomater Sci ; 10(6): 1486-1497, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167630

RESUMO

To date, the robust and durable adhesion capability of hydrogel adhesives in wet environments remains a huge challenge. Herein, a physicochemically double-network crosslinked hydrogel matrix was prepared by mixing acrylic acid (AAc), chitosan (CS) and tannic acid (TA) as the main components and the subsequent in situ polymerization of AAc. The abundant reactive sites on the surface of the hydrogel matrix facilitate rapid, strong and repeatable adhesion to different surfaces of engineering solids and biological tissues in an aquatic environment. The formation of amide covalent bonds resulting from the addition of the bridging agent further expands the long-term application of the hydrogel in tissue repair, and the constructed hydrogel-tissue adhesive interface still has robust adhesion energy after soaking in a physiological environment for up to one month. Moreover, the hydrogel showed fantastic hemostatic performance due to its characteristics of platelet adhesion and high burst pressure. Overall, the persistent adhesion and excellent cytocompatibility of the hydrogel adhesive make it potentially applicable in medical adhesives.


Assuntos
Quitosana , Adesivos Teciduais , Adesivos , Hemostasia , Hidrogéis/química , Adesivos Teciduais/química
10.
Colloids Surf B Biointerfaces ; 218: 112772, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985128

RESUMO

This study developed, a novel polypropylene (PP) mesh combined with poly (L-lactic acid) (PLA) electrospun nanofibers loaded sirolimus (SRL). The PP mesh was combined with PLA/SRL (1/0, 1/0.01, 1/0.02; mass ratios) composed electrospun membrane characterized by FTIR spectroscopy, XPS and SEM, and evaluated for cytocompatibility in vitro. In an in vivo study, a total of 84 Sprague-Dawley rats were employed to evaluate the efficacy of the novel composite PP mesh anti-adhesion, mechanical properties and inflammation. As a results, the PLA/SRL membrane could compound with PP mesh stably and load SRL. Although tensile testing showed that the mechanical properties of composite mesh decreased in vivo, the integration strength between the tissue and mesh was still able to counteract intra-abdominal pressure. Compared with the native PP mesh group, the novel PP mesh group showed a lower score for abdominal adhesion and inflammation. More importantly, the novel PP mesh completely integrated with the abdominal wall and had sufficient mechanical strength to repair abdominal wall defects.


Assuntos
Herniorrafia , Polipropilenos , Animais , Herniorrafia/métodos , Inflamação/tratamento farmacológico , Ácido Láctico/química , Poliésteres , Polipropilenos/química , Polipropilenos/farmacologia , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacologia , Telas Cirúrgicas , Aderências Teciduais/tratamento farmacológico
11.
Langmuir ; 27(9): 5410-9, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21469676

RESUMO

Breath figure (BF) process is a facile method to prepare honeycomb structures by dynamic movements of condensed micrometer-sized water droplets at the interface of volatile fluid. Here, we aim to find answers to understand how the BF process occurs on micropipettes with curvature gradient and to understand the role of the surfactant in obtaining honeycomb patterns. Poly (L-lactic acid) (PLLA) chloroform solution with dioleoylphosphatidylethanolamine (DOPE) as surfactant was utilized. It is found that the honeycomb structure formed on the micropipettes changes remarkably with the gradually increased surface curvature. The variation trends of the arrangement and diameter of pores on the micropipettes with the increasing curvature are similar to the different time stages of BF process: smaller and sparse pores formed at higher curvature are similar to those formed at early stage of BF; regular honeycomb patterns formed at lower curvature are similar to those formed at the late stage of BF. Especially, the "semi-coalescence" hemispherical pores strings are found at high curvatures on PLLA-DOPE films, indicating the surfactant-induced coalescence of water droplets in BF process. The differences of drying speed of polymer solvent on micropipette with gradually increased curvatures make the printing of the pores at different BF stages on polymer film possible. These findings not only strongly support the mechanism of BF array formation, but also elucidate the surfactant-induced coalescence.


Assuntos
Microtecnologia/métodos , Tensoativos/química , Vidro/química , Ácido Láctico/química , Fosfatidiletanolaminas/química , Poliésteres , Polímeros/química , Propriedades de Superfície
12.
ACS Biomater Sci Eng ; 7(12): 5524-5531, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34817982

RESUMO

Poly(lactide-co-glycolide) (PLGA) has been widely used as a scaffold material for tissue engineering owing to its biocompatibility, biodegradability, and biosafety. However, lactic acid (LA) produced during PLGA degradation is prone to inflammation, which is a shortcoming that must be avoided. To this end, crystalline PLGA-PEG was synthesized here for the first time. To make the crystalline PLGA-PEG more suitable for tissue engineering, porous crystalline PLGA-PEG was prepared via the swelling behavior during recrystallization annealing. The structure and properties of the porous crystalline PLGA-PEG were confirmed by SEM, POM, and XRD. Furthermore, the swelling behavior of different PEG molecular weights was studied, and the cell viability test and alkaline phosphatase activity test showed that PLGA-PEG has good biocompatibility. Such a porous crystalline PLGA-PEG will make PLGA have a broader application prospect in bone repair.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Engenharia Tecidual
13.
Mater Sci Eng C Mater Biol Appl ; 118: 111477, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255056

RESUMO

The extracellular matrix (ECM) affects cell behaviors, such as survival, proliferation, motility, invasion, and differentiation. The arginine-glycine-aspartic acid (RGD) sequence is present in several ECM proteins, such as fibronectin, collagen type I, fibrinogen, laminin, vitronectin, and osteopontin. It is very critical to develop ECM-like substrates with well-controlled features for the investigation of influence of RGD on the behavior of tumor cells. In this study, poly(ethylene glycol) (PEG)-crosslinked poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)) hydrogels (PEMM) with different RGD contents were synthesized, fully characterized, and established as in vitro culture platforms to investigate the effects of RGD content on cancer stem cell (CSC) enrichment. The morphology, proliferation, and viability of SK-OV-3 ovarian cancer cells cultured on hydrogels with different RGD contents, the expression of CSC markers and malignant signaling pathway-related genes, and drug resistance were systematically evaluated. The cell aggregates formed on the hydrogel surface with a lower RGD content acquired certain CSC-like properties, thus drug resistance was enhanced. In contrast, the drug sensitivity of cells on the higher RGD content surface increased because of less CSC-like properties. However, the presence of RGD in the stiff hydrogels (PEMM2) had less effect on the stemness expression than did its presence in the soft hydrogels (PEMM1). The results suggest that RGD content and matrix stiffness can lead to synergetic effects on the expression of cancer cell stemness and the epithelial-mesenchymal transition (EMT), interleukin-6 (IL-6), and Wnt pathways.


Assuntos
Hidrogéis , Neoplasias Ovarianas , Células Cultivadas , Feminino , Humanos , Anidridos Maleicos , Células-Tronco Neoplásicas , Oligopeptídeos , Neoplasias Ovarianas/tratamento farmacológico , Polietilenoglicóis , Polivinil
14.
ACS Appl Bio Mater ; 4(6): 5016-5025, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007050

RESUMO

Hydrogel adhesives have been widely used in wet environments. Nonetheless, strong and stable persistent adhesion remains a challenge. Here, we report a facile yet powerful strategy to construct high-strength hydrogel adhesives for durable adhesion in a saline environment. Such a hydrogel consists of two polymer networks: a hydrophobic-associated polyacrylamide network of covalent and noncovalent cross-links and an alginate network cross-linked by divalent cations in saline. Meanwhile, polydopamine nanoparticles formed through in-situ self-polymerization are distributed evenly throughout the system to provide underwater adhesion. A low and controllable swelling rate and high compressive strength of hydrogels can be achieved via this multiple interaction strategy. Ultimately, this strategy contributes to the persistent underwater adhesion of hydrogels, and the decreasing rate of lap-shear adhesion strength of hydrogels is only 24.79 ± 8.01% after saline immersion for up to 21 days. Moreover, good cytocompatibility of hydrogels is helpful for their application in the biomedical field.


Assuntos
Adesivos/química , Hidrogéis/química , Acrilamida/química , Resinas Acrílicas/química , Adesivos/administração & dosagem , Alginatos/química , Sulfato de Amônio/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Etanolaminas/química , Humanos , Hidrogéis/administração & dosagem , Indóis/administração & dosagem , Indóis/química , Metacrilatos/química , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química , Solução Salina/química
15.
Langmuir ; 26(4): 2477-83, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19775133

RESUMO

In the present study, we introduced Ag nanoparticles into polymer and found for the first time that Ag nanoparticles can induce the formation of breath figure (BF) arrays on polymer surfaces. The effect of Ag nanoparticles has a balance with the BF process, which is influenced by humidity levels and polymers. These nanoparticle-induced BF process involves an interesting interaction between two self-assembly processes on different length scales. The aggregation of Ag nanoparticles on the water/polymer interface might be the key to their inducing ability. Hence, the interfacial-active Ag nanoparticles can be utilized to widen the applications of the BF method and to fabricate a wide variety of novel functionalized porous polymer films.


Assuntos
Ácido Láctico/química , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Tamanho da Partícula , Poliésteres , Propriedades de Superfície , Água/química
16.
ACS Biomater Sci Eng ; 6(6): 3310-3326, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463174

RESUMO

A better understanding of cancer stem cells (CSCs) is essential for research on cancer therapy and drug resistance. Currently, increasingly more investigations are focused on obtaining CSCs to study the mechanism of their enhanced malignancy. In this work, three kinds of double-network hydrogels (PEMM/alginate), consisting of poly(ethylene glycol) (PEG) covalently cross-linked poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)) (network 1, denoted as PEMM) and Sr2+ (or Ca2+, Fe3+) ionically cross-linked alginates (network 2, denoted as SrAlg, CaAlg, or FeAlg), were prepared. The stiffness, morphology, and components of the PEMM/alginate hydrogels were systematically investigated to understand their effects on CSC enrichment. Only the PEMM/FeAlg hydrogels could support the long-term growth, proliferation, and spheroid formation of SK-OV-3 cells. The expression of CSC-related markers was evaluated with the levels of protein and gene at different stages. The cell spheroids cultured in the PEMM/FeAlg hydrogels acquired certain CSC-like properties, thus drug resistance was enhanced, especially in the PEMM-1/FeAlg hydrogel. In vivo tumorigenicity experiments also confirmed the presence of more CSCs in the PEMM-1/FeAlg hydrogel. The results suggest that matrix stiffness, morphology, and cations act synergistically on the regulation of the epithelial-mesenchymal transition (EMT), interleukin-6 (IL-6), and Wnt pathways, affecting the invasiveness of ovarian cancer and the conversion of the non-CSCs into CSCs. The PEMM-1/FeAlg hydrogel with lower elastic modulus, a more macroporous morphology, and higher swelling rate can significantly enhance the stemness, malignancy, and tumorigenicity of SK-OV-3 cells.


Assuntos
Hidrogéis , Neoplasias Ovarianas , Alginatos , Feminino , Humanos , Anidridos Maleicos , Células-Tronco Neoplásicas , Neoplasias Ovarianas/tratamento farmacológico , Polietilenoglicóis , Polivinil
17.
J Mater Chem B ; 8(36): 8232-8241, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32667027

RESUMO

Mussel-inspired catechol-based strategy has been widely used in the development of underwater adhesives. Nonetheless, the properties of the adhesives were still severely limited under harsh environments. A facile approach was proposed herein to prepare a double network hydrogel adhesive with low swelling rate and high strength in seawater, where the first network was polyacrylamide (PAM) and the second network was alginate (Alg). Meanwhile, polydopamine (PDA) nanoparticles, which were formed through self-polymerization as adhesion anchoring sites, distributed evenly throughout the double network hydrogel and effectively enhanced the adhesion capability of the hydrogel. The properties of the resulting hydrogel have been fully characterized. The optimal adhesion strength of the hydrogel adhesive in seawater was as high as 146.84 ± 7.78 kPa. Furthermore, the hydrogel also has excellent ability to promote the growth of zooxanthellae. Our studies provide useful insights into the rational design of underwater adhesives with high performances even beyond nature.


Assuntos
Adesivos/química , Hidrogéis/química , Indóis/química , Nanocompostos/química , Polímeros/química , Água do Mar/química , Resinas Acrílicas/química , Resinas Acrílicas/toxicidade , Adesivos/toxicidade , Alginatos/química , Alginatos/toxicidade , Dinoflagellida/efeitos dos fármacos , Hidrogéis/toxicidade , Indóis/toxicidade , Nanocompostos/toxicidade , Polímeros/toxicidade
18.
ACS Biomater Sci Eng ; 6(3): 1735-1743, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33455390

RESUMO

Polypropylene (PP) mesh has been used successfully for a long time in clinical practice as an impressive prosthesis for ventral hernia repair. To utilize a physical barrier for separating mesh from viscera is a general approach for preventing adhesions in clinical practice. However, a serious abdominal adhesion between the mesh and viscera can possibly occur post-hernia, especially with the small intestine; this can lead to a series of complications, such as chronic pain, intestinal obstruction, and fistula. Thus, determining how to prevent abdominal adhesions between the mesh and viscera is still an urgent clinical problem. In this study, a dopamine-functionalized polysaccharide derivative (oxidized-carboxymethylcellulose-g-dopamine, OCMC-DA) was synthesized; this was blended with carboxymethylchitosan (CMCS) to form a hydrogel (OCMC-DA/CMCS) in situ at the appropriate time. The physical and chemical properties of the hydrogel were characterized successfully, and its excellent biocompatibility was presented by the in vitro cell test. The combination of this hydrogel and PP mesh was used in laparoscopic surgery for repairing the abdominal wall defect, where the hydrogel could become fixed in situ on the PP mesh to form an anti-adhesion gel-mesh. The results showed that the gel-mesh could prevent abdominal adhesions effectively in the piglet model. Moreover, the histology and immunohistochemical staining proved that the gel-mesh could effectively alleviate the inflammation reaction and deposition of collagen around the mesh, and it did not disturb the integration between mesh and abdominal wall. Thus, the gel-mesh has superior tissue compatibility.


Assuntos
Laparoscopia , Polipropilenos , Animais , Herniorrafia/efeitos adversos , Hidrogéis , Telas Cirúrgicas , Suínos , Aderências Teciduais/prevenção & controle
19.
J Mater Chem B ; 8(10): 2148-2154, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32091061

RESUMO

The mussel-inspired catechol-based strategy has been widely used in the development of adhesives. However, the properties of the obtained adhesives were still severely limited in a humid environment, particularly in water. In this study, a facile and versatile approach was proposed to prepare an underwater adhesion hydrogel. First, dopamine (DA) was grafted on oxidized carboxymethylcellulose (OCMC) to obtain dopamine-grafted oxidized carboxymethylcellulose (OCMC-DA). Second, the acrylamide (AM) monomer was conjugated with OCMC-DA by a Schiff base reaction, and then polymerized to form an OCMC-DA/PAM hydrogel. The properties of the resulting hydrogel have been fully characterized. The underwater adhesion strength of the hydrogel can reach as high as 86.3 ± 7.2 kPa and reduced to 43 ± 3.4 kPa after being immersed in water for 9 days. More remarkably, we found that the maximal adhesion strength was shown when the G' and G'' of the hydrogel were very close. Moreover, we demonstrated the mechanical properties of our fabricated hydrogel by compressive tests and rheological analysis. The adhesive hydrogel also exhibits excellent biocompatibility.


Assuntos
Materiais Biocompatíveis/química , Catecóis/química , Hidrogéis/química , Adesivos Teciduais/química , Água/química , Animais , Bivalves , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície , Aderências Teciduais
20.
Biomater Sci ; 7(4): 1323-1334, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30640329

RESUMO

Polypropylene (PP) meshes are one of the most commonly used prosthesis materials in repairing abdominal wall defects. However, their application is usually limited due to possible serious abdominal adhesions between the mesh and the viscera. Instilling PP meshes with excellent anti-adhesion characteristics is still a formidable challenge. In this work, in order to prevent intestinal adhesion to the PP mesh, an effective method was developed to prepare anti-adhesive PP meshes, which was inspired by mussel adhesive proteins. A functional monomer, namely, dopamine methacrylamide, was first synthesized. Then, it was copolymerized with poly(ethylene glycol) methacrylate on the surface of O2-plasma-treated PP (OPP) meshes to form comb-like copolymer poly[poly(ethylene glycol) methacrylate-co-dopamine methacrylamide] (PEDMA), which was simultaneously grafted in situ on the OPP mesh surface through the catechol group of PEDMA, subsequently yielding an anti-adhesive PP mesh (OPP-g-PEDMA). The properties of PEDMA and OPP-g-PEDMA meshes were characterized by NMR, GPC, TGA, FTIR, XPS, SEM, and water contact angle measurements. NIH-3T3 cells were employed to assess the cytocompatibility of OPP-g-PEDMA in vitro. Furthermore, the rat abdominal wall defect model was used to evaluate the efficacy of adhesion prevention. The results show that OPP-g-PEDMA not only possesses fantastic biocompatibility but also satisfactory anti-adhesion property involving minimal chronic inflammation, as well as lower adhesion formation rate and adhesion tenacity scores (less than 1.0). This type of OPP-g-PEDMA mesh is a promising candidate in effectively preventing peritoneal adhesion during abdominal wall defect repair.


Assuntos
Parede Abdominal/crescimento & desenvolvimento , Polietilenoglicóis/farmacologia , Polipropilenos/farmacologia , Telas Cirúrgicas , Aderências Teciduais/cirurgia , Adsorção , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Masculino , Teste de Materiais , Camundongos , Estrutura Molecular , Células NIH 3T3 , Tamanho da Partícula , Polietilenoglicóis/química , Polipropilenos/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA