Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Orthod Dentofacial Orthop ; 165(1): 27-37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676219

RESUMO

INTRODUCTION: This study aimed to evaluate mandibular asymmetry in unilateral posterior crossbite (UPXB) patients and compare the asymmetry between adolescents and adults with UPXB. METHODS: This study included and analyzed cone-beam computed tomography scans of 125 subjects. The subjects were divided into a UPXB group and a control group according to the presence or absence of UPXB, and each group included adolescent patients (aged 10-15 years) and adult patients (aged 20-40 years). Linear, angular, and volumetric measurements were obtained to evaluate the asymmetries of the mandibles. RESULTS: Both adolescent and adult patients in the UPXB group presented asymmetries in condylar unit length, ramal height, body length, and mediolateral ramal inclination (P <0.05). Adult patients with UPXB showed greater asymmetries than adolescents. Differences with condylar unit length, condylar unit width, ramal height, condylar unit volume, and hemimandibular volume were significantly greater in adult UPXB patients than adolescent UPXB patients (P <0.05). CONCLUSIONS: The worsening of mandibular asymmetries in UPXB adults suggests that asymmetry in UPXB patients may progress over time; therefore, early treatment should be considered for UPXB adolescent patients. Further studies are still needed to evaluate the effectiveness of early treatment.


Assuntos
Má Oclusão , Côndilo Mandibular , Adulto , Humanos , Adolescente , Côndilo Mandibular/diagnóstico por imagem , Assimetria Facial/diagnóstico por imagem , Mandíbula/diagnóstico por imagem , Má Oclusão/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos
2.
J Environ Sci (China) ; 103: 311-321, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743912

RESUMO

Organic polymeric flocculants are commonly used in improving dredged sludge dewaterability, but less attention has been paid to residual water quality. In this paper, the effects of cationic etherified starch (CS) and poly-dimethyl diallyl ammonium chloride (PDDA) on dredged sludge dewatering efficiency and residual water quality of Baiyangdian lake were comprehensively investigated and evaluated by analytic hierarchy process (AHP). The results indicated that PDDA had stronger electrical effect and flocculation performance compared with CS, resulting in more efficient dewatering performance. PDDA can reduce the pollutants of discharged residual water, while CS significantly promoted the increase of NH4+-N and NO3--N in the residual water. The increase of NH4+-N in the residual water of CS was due to the release of dredged sludge, while the increase of NO3--N was introduced by CS leaching. AHP showed that PDDA performed better in flocculation treatment of dredged sludge than other organic polymers. This work provides a method for optimization of flocculation treatment for dredged sludge dewaterability.


Assuntos
Polímeros , Esgotos , Processo de Hierarquia Analítica , Floculação , Eliminação de Resíduos Líquidos , Água
3.
J Environ Sci (China) ; 100: 257-268, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279038

RESUMO

Extracellular polymeric substances (EPS) form a stable gel-like structure to combine with water molecules through steric hindrance, making the mechanical dewatering of wastewater sludge considerably difficult. Coagulation/flocculation has been widely applied in improving the sludge dewatering performance, while sludge properties (organic fraction and solution chemistry conditions) are highly changeable and have important effects on sludge flocculation process. In this work, the alkalinity effects on sludge conditioning with hydroxy-aluminum were comprehensively investigated, and the interaction mechanisms between EPS and hydroxy-aluminum with different speciation were unraveled. The results showed that the effectiveness of hydroxy-aluminum conditioning gradually deteriorated with increase in alkalinity. Meanwhile, the polymeric hydroxy-aluminum (Al13) and highly polymerized hydroxy-aluminum (Al30) were hydrolysed and converted into amorphous aluminum hydroxide (Al(OH)3), which changed the flocculation mechanism from charge neutralization and complexing adsorption to hydrogen bond interaction. Additionally, both Al13 and Al30 showed higher binding capacity for proteins and polysaccharides in EPS than monomeric aluminum and Al(OH)3. Al13 and Al30 coagulation changed the secondary structure of proteins in EPS, which caused a gelation reaction to increase molecular hydrophobicity of proteins and consequently sludge dewaterability. This study provided a guidance for optimizing the hydroxy-aluminum flocculation conditioning of sludge with high solution alkalinity.


Assuntos
Esgotos , Águas Residuárias , Alumínio , Matriz Extracelular de Substâncias Poliméricas , Filtração , Floculação , Polímeros , Eliminação de Resíduos Líquidos , Água
4.
J Environ Sci (China) ; 106: 83-96, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34210442

RESUMO

In this work, we employed waste activated sludge (WAS) as carbon source to prepare ultrahigh specific surface area (SSA) biopolymers-based carbons (BBCs) through alkali (KOH) treatment coupled to pyrolysis strategy. Before the pyrolysis process, the involvement of KOH made a great recovery of soluble biopolymers from WAS, resulting in highly-efficient catalytic pyrolysis. The Brunner-Emmett-Teller and pore volume of BBCs prepared at 800°C (BBC800) reached the maximum at 2633.89 m2·g-1 and 2.919 m3·g-1, respectively. X-ray photoelectron spectroscopy suggested that aromatic carbon in the form of C=C was the dominant fraction of C element in BBCs. The N element in BBCs were composed of pyrrolic nitrogen and pyridinic nitrogen at 700°C, while a new graphitic nitrogen appeared over 800°C. As a refractory pollutant of wastewater treatment plants, tetracycline (TC) was selected to evaluate adsorption performance of BBCs. The adsorption behavior of BBCs towards TC was conformed to the pseudo-second-order kinetic and the Langmuir models, signifying that chemisorption of monolayers was dominant in TC adsorption. The adsorption capacity of BBC800 reached the maximum at 877.19 mg·g-1 for 90 min at 298 K. Thermodynamic analysis indicated that the adsorption process was endothermic and spontaneous. Hydrogen bonding and π-π stacking interaction were mainly responsible for TC adsorption, and interfacial diffusion was the main rate-control step in adsorption process. The presence of soluble microbial products (SMPs) enhanced TC removal. This work provided a novel strategy to prepare bio-carbon with ultrahigh SSA using WAS for highly-efficient removal of organic pollutants.


Assuntos
Esgotos , Poluentes Químicos da Água , Adsorção , Álcalis , Biopolímeros , Carbono , Carvão Vegetal , Cinética , Pirólise , Poluentes Químicos da Água/análise
5.
Water Res ; 257: 121669, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728786

RESUMO

Tire wear particles (TWPs) are considered a significant contributor of microplastics (MPs) in the sludge during heavy rainfall events. Numerous studies have shown that hydrothermal treatment (HT) of sludge can accelerate the leaching of MP-derived compound into hydrothermal liquid, thus impairing the performance of subsequent anaerobic digestion and the quality of the hydrothermal liquid fertilizer. However, the leaching behavior of TWPs in the HT of sludge remains inadequately explored. This study examined the molecular composition of TWP-derived compounds and transformation pathways of representative tire-related additives under different hydrothermal temperatures using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with mass difference analysis. The acute toxicity and phytotoxicity of TWP leachates were assessed using Vibrio qinghaiensis Q67 and rice hydroponics experiments. The results indicated that elevating the hydrothermal temperature not only amplified the leaching behavior of TWPs but also enhanced the chemical complexity of the TWP leachate. Utilizing both suspect and non-target screenings, a total of 144 compounds were identified as additives, including N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PDD), hexa(methoxymethyl)melamine (HMMM), dibutyl phthalate (DBP). These additives underwent various reactions, such as desaturation, acetylation, and other reactions, leading to the formation of different transformation products (TPs). Moreover, certain additives, including caprolactam and 2,2,6,6-tetramethyl-4-piperidinol, demonstrated the potential to form conjugate products with amino acids or Maillard products. Meanwhile, TWP-derived compounds showed significant acute toxicity and detrimental effects on plant growth. This study systematically investigated the environmental fate of TWPs and their derived compounds during the HT of sludge, offering novel insights into the intricate interactions between the micropollutants and dissolved organic matter (DOM) in sludge.


Assuntos
Esgotos , Esgotos/química , Microplásticos , Poluentes Químicos da Água/química , Espectrometria de Massas em Tandem , Eliminação de Resíduos Líquidos
6.
Water Res ; 252: 121231, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324988

RESUMO

Alkali-hydrothermal treatment (AHT) of sewage sludge is often used to recover value-added dissolved organic matters (DOM) enriched with artificial humic acids (HA). Microplastics (MPs), as emerging contaminants in sewage sludge, can leach organic compounds (MP-DOM) during AHT, which potentially impact the characteristics of thermally treated sludge's DOM. This study employed spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) to explore the impacts of MPs on DOM composition and transformation during AHT. The biological effects of DOM were also investigated by hydroponic experiments. The results showed that the leaching of MP-DOM led to a substantial increase in DOC content of DOM of thermally treated sludge. Conversely, the HA content significantly decreased in the presence of MPs, resulting in a decline of plant growth facilitation degree. FT-ICR-MS analysis revealed that the reduction in HA content was characterized by a notable decline in the abundance of O6-7 and N1-3O6-7 molecules. Reactomics results indicated that the leaching of MP-DOM inhibited the Maillard reaction but bolstered oxidation reactions. The inhibition of Maillard reaction, resulting in a decrease in crucial precursors (dicarbonyl compounds, ketoses, and deoxyglucosone), was responsible for the decrease of HA content. The primary mechanism responsible for inhibiting the Maillard reaction was the consumption of reactive amino reactants through two pathways. Firstly, the leaching of organic acids in MP-DOM caused decrease of sludge pH, leading to the protonation of amino groups. Secondly, the lipid-like compounds in MP-DOM underwent oxidation (-2H+O), producing fatty aldehydes that consumed the reactive amino reactants. These discoveries offer enhanced insights into the specific contribution of MPs to the composition, transformation, bioactivity of DOM during AHT process.


Assuntos
Microplásticos , Esgotos , Plásticos , Compostos Orgânicos/análise , Espectrometria de Massas , Substâncias Húmicas/análise , Matéria Orgânica Dissolvida
7.
Water Res ; 258: 121759, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754299

RESUMO

Waste activated sludge serves an important reservoir for antibiotics within wastewater treatment plants, and understanding the occurrence and evolution of antibiotics during sludge treatment is crucial to mitigate the potential risks of subsequent resource utilization of sludge. This study explores the degradation and transformation mechanisms of three typical antibiotics, oxytetracycline (OTC), ofloxacin (OFL), and azithromycin (AZI) during sludge hydrothermal treatment (HT), and investigates the influence of biopolymers transformation on the fate of these antibiotics. The findings indicate that HT induces a shift of antibiotics from solid-phase adsorption to liquid-phase dissolution in the initial temperature range of 25-90 °C, underscoring this phase's critical role in preparing antibiotics for subsequent degradation phases. Proteins (PN) and humic acids emerge as crucial for antibiotic binding, facilitating their redistribution within sludge. Specifically, the binding capacity sequence of biopolymers to antibiotics is as follows: OFL>OTC>AZI, highlighting that OFL-biopolymers display stronger electrostatic attraction, more available adsorption sites, and more stable binding strength. Furthermore, antibiotic degradation mainly occurs above 90 °C, with AZI being the most temperature-sensitive, degrading 92.97% at 180 °C, followed by OTC (91.26%) and OFL (52.51%). Concurrently, the degradation products of biopolymers compete for active sites to form novel amino acid-antibiotic conjugates, which inhibits the further degradation of antibiotics. These findings illuminate the effects of biopolymers evolution on intricate dynamics of antibiotics fate in sludge HT and are helpful to optimize the sludge HT process for effective antibiotics abatement.


Assuntos
Antibacterianos , Esgotos , Esgotos/química , Antibacterianos/química , Biopolímeros/química , Adsorção , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos , Azitromicina/química , Temperatura
8.
Anal Chem ; 85(4): 2260-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23320530

RESUMO

Despite the significant progress in the measurements of aerosol extinction and absorption using spectroscopy approaches such as cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS), the widely used single-wavelength instruments may suffer from the interferences of gases absorption present in the real environment. A second instrument for simultaneous measurement of absorbing gases is required to characterize the effect of light extinction resulted from gases absorption. We present in this paper the development of a blue light-emitting diode (LED)-based incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) approach for broad-band measurements of wavelength-resolved aerosol extinction over the spectral range of 445-480 nm. This method also allows for simultaneous measurement of trace gases absorption present in the air sample using the same instrument. On the basis of the measured wavelength-dependent aerosol extinction cross section, the real part of the refractive index (RI) can be directly retrieved in a case where the RI does not vary strongly with the wavelength over the relevant spectral region. Laboratory-generated monodispersed aerosols, polystyrene latex spheres (PSL) and ammonium sulfate (AS), were employed for validation of the RI determination by IBBCEAS measurements. On the basis of a Mie scattering model, the real parts of the aerosol RI were retrieved from the measured wavelength-resolved extinction cross sections for both aerosol samples, which are in good agreement with the reported values. The developed IBBCEAS instrument was deployed for simultaneous measurements of aerosol extinction coefficient and NO(2) concentration in ambient air in a suburban site during two representative days.


Assuntos
Aerossóis/química , Espectrofotometria , Absorção , Sulfato de Amônio/química , Gases/química , Óxido Nítrico/análise , Óxido Nítrico/química , Tamanho da Partícula , Poliestirenos/química
9.
Sci Total Environ ; 892: 164548, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37269994

RESUMO

Microplastic-derived dissolved organic matter (MP-DOM) is crucial for assessing ecological and environmental impact of microplastics. However, the factors that influence the ecological effects of MP-DOM are yet to be determined. This study investigated the influence of plastic type and leaching conditions (thermal hydrolysis, TH; hydrothermal carbonization, HTC) on the molecular properties and toxicity of MP-DOM using spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Results revealed that plastic type was the main factor affecting the chemodiversity of MP-DOM, compared to leaching conditions. Polyamide 6 (PA6) dissolved the largest number of DOM due to the presence of heteroatoms, followed by polypropylene (PP) and polyethylene (PE). From TH to HTC processes, the molecular composition of PA-DOM remained constant, with CHNO compounds being dominant, and labile compounds (lipids-like, and protein/amino sugar-like compounds) accounting for >90 % of the total compounds. In polyolefin-sourced DOM, CHO compounds were dominant, and the relative concentration of labile compounds decreased dramatically, resulting in the higher degree of unsaturation and humification than PA-DOM. The mass difference network analysis showed that the main reaction in PA-DOM and PE-DOM was oxidation while in PP-DOM, it was the carboxylic acid reaction. However, plastic type and leaching conditions jointly influenced the toxic effects of MP-DOM. PA-DOM was bioavailable, while polyolefin-sourced DOM leached under HTC treatment exhibited toxicity, with lignin/CRAM-like compounds being the dominant toxic compounds. Notably, the 2-fold higher relative intensity of the toxic compounds and the 6-fold higher abundance of highly unsaturated and phenolic-like compounds in PP-DOMHTC resulted in the higher inhibition rate than PE-DOMHTC. Toxic molecules in PE-DOMHTC mainly directly dissolved from PE polymers, while almost 20 % of toxic molecules in PP-DOMHTC resulted from molecular transformation, where dehydration (-H2O) was the core reaction. These findings offer advanced insights into the management and treatment of MPs in sludge.


Assuntos
Plásticos , Esgotos , Plásticos/toxicidade , Microplásticos , Matéria Orgânica Dissolvida
10.
J Hazard Mater ; 448: 130718, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860029

RESUMO

Previous knowledge of dissolved organic matter leached from microplastics (MP-DOM) was mainly based on the aquatic environment. The molecular characteristics and biological effects of MP-DOM in other environments have rarely been examined. In this work, FT-ICR-MS was applied to identify MP-DOM leached from sludge hydrothermal treatment (HTT) at different temperatures, and the plant effects and acute toxicity were investigated. The results showed that the molecular richness and diversity of MP-DOM increased with rising temperature, accompanied by molecular transformation in the meantime. The oxidation was crucial whereas the amide reactions mainly occurred at 180-220 oC. MP-DOM promoted root development of Brassica rapa (field mustard) by affecting the expression of genes and the effect was enhanced with rising temperature. Specifically, the lignin-like compounds in MP-DOM down-regulated Phenylpropanoids biosynthesis, while CHNO compounds up-regulated the nitrogen metabolism. Correlation analysis presented that alcohols/esters leached at 120-160 oC were responsible for the promotion of root, while glucopyranoside leached at 180-220 oC was vital for root development. However, MP-DOM produced at 220 oC showed the acute toxicity to luminous bacteria. Considering the further-treatment of sludge, the optimum HTT temperature could be controlled at 180 oC. This work provides novel insight into the environmental fate and eco-environmental effects of MP-DOM in sewage sludge.


Assuntos
Brassica rapa , Microplásticos , Esgotos , Matéria Orgânica Dissolvida , Plásticos , Amidas
11.
Bioact Mater ; 21: 450-463, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36185742

RESUMO

The regeneration of alveolar bone after tooth extraction is critical for the placement of dental implants. Developing a rigid porous scaffold with defect shape adaptability is of great importance but challenging for alveolar bone regeneration. Herein, we design and synthesize a biocompatible poly(l-glutamic acid)-g-poly(ε-caprolactone) (PLGA-g-PCL) porous shape memory (SM) polymer. The PLGA-g-PCL is then copolymerized with acryloyl chloride grafted poly(ω-pentadecalactone) (PPDLDA) having a higher phase transition temperature than shape recovery temperature to maintain stiffness after shape recovery to resist chewing force. The hybrid polydopamine/silver/hydroxyapatite (PDA/Ag/HA) is coated to the surface of (PLGA-g-PCL)-PPDL scaffold to afford the anti-bacterial activity. The porous SM scaffold can be deformed into a compact size and administered into the socket cavity in a minimally invasive mode, and recover its original shape with a high stiffness at body temperature, fitting well in the socket defect. The SM scaffold exhibits robust antibacterial activity against Staphylococcus aureus (S. aureus). The porous microstructure and cytocompatibility of PLGA allow for the ingrowth and proliferation of stem cells, thus facilitating osteogenic differentiation. The micro-CT and histological analyses demonstrate that the scaffold boosts efficient new bone regeneration in the socket of rabbit mandibular first premolar. This porous shape memory self-adaptive stiffened polymer opens up a new avenue for alveolar bone regeneration.

12.
Water Res ; 232: 119675, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758351

RESUMO

Interactions between cations and extracellular polymeric substances (EPS) play an important role in the formation of microbial aggregates and have key effects on the physical properties of activated sludge across wastewater and sludge treatment process. Here, a molecular model of EPS cluster in activated sludge was constructed and simulated by molecular dynamics (MD) to probe the structural properties of EPS and the interaction between EPS and prevalent multivalent cations (Ca2+, Mg2+, Al3+). Then the predicted changes in physical properties were validated against the dynamic light scattering, XAD resin fractionation and rheology test. The binding dynamics and interactions mechanisms between multivalent cations and EPS functional groups were further investigated using MD in combination with spectroscopic analysis. Results suggest that biopolymers are originally aggregated by electrostatic and intermolecular interactions forming dynamic clusters with negatively charged surface functional groups, which induced electrostatic repulsion preventing further agglomeration of biopolymer clusters. In the presence of multivalent cations, surface polar functional groups in biopolymers are connected, causing the rearrangement of EPS molecular conformation that forms larger and denser agglomerates. Reduced solvent accessible surface area, enhanced hydrophobicity, and increased binding free energy lead to a strong gel-like network of EPS. Ca2+ and Al3+ predominantly interact with functional groups in polysaccharides, promoting agglomeration of macromolecules. In contrast, Mg2+ and Al3+ disrupted the secondary structure of proteins, exposing hydrophobic interaction sites. Al3+ can better agglomerate biopolymers with its higher positive charge and shorter coordination distance as compared to Ca2+ and Mg2+, but compromised by the effect of hydration. This work offers a novel approach to explore the construction and molecular aggregation of EPS, enriching the theoretical basis for optimization of wastewater and sludge treatment.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Simulação de Dinâmica Molecular , Cátions , Biopolímeros/química
13.
Environ Int ; 167: 107389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35843072

RESUMO

Chlorination disinfection has been widely used to kill the pathogenic microorganisms in wastewater sludge during the special Covid-19 period, but sludge chlorination might cause the generation of harmful disinfection byproducts (DBPs). In this work, the transformation of extracellular polymeric substance (EPS) and mechanisms of Cl-DBPs generation during sludge disinfection by sodium hypochlorite (NaClO) were investigated using multispectral analysis in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The microorganism Escherichia coli (E. coli) was effectively inactivated by active chlorine generated from NaClO. However, a high diversity of Cl-DBPs were produced with the addition of NaClO into sludge, causing the increase of acute toxicity on Q67 luminous bacteria of chlorinated EPS. A variety of N-containing molecular formulas were produced after chlorination, but N-containing DBPs were not detected, which might be the indicative of the dissociation of -NH2 groups after Cl-DBPs generated. Additionally, the release of N-containing compounds was increased in alkaline environment caused by NaClO addition, resulted in more Cl-DBPs generation via nucleophilic substitutions. Whereas, less N-compounds and Cl-DBPs were detected after EPS chlorination under acidic environment, leading to lower cell cytotoxicity. Therefore, N-containing compounds of lignin derivatives in sludge were the major Cl-DBPs precursors, and acidic environment could control the release of N-compounds by eliminating the dissociation of functional groups in lignin derivatives, consequently reducing the generation and cytotoxicity of Cl-DBPs. This study highlights the importance to control the alkalinity of sludge to reduce Cl-DBPs generation prior to chlorination disinfection process, and ensure the safety of subsequential disposal for wastewater sludge.


Assuntos
COVID-19 , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/toxicidade , Desinfecção/métodos , Escherichia coli , Matriz Extracelular de Substâncias Poliméricas/química , Halogenação , Humanos , Lignina , Esgotos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
14.
Sci Total Environ ; 769: 144798, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465628

RESUMO

In this study, the molecular transformation of sludge biopolymers during hydrothermal treatment with the temperature ranging from 25 °C to 200 °C was examined and was seen to significantly affect the macrophysical properties (dewaterability and rheological property) of sludge. The results showed that the sludge dewaterability and flow ability under high shear stress deteriorated by a hydrothermal process at 25 °C to 120 °C, but the deterioration alleviated above the temperature threshold of 120 °C. The consistence of changes in sludge dewaterability and rheological property in HT process was mainly attributed to the variation in gel properties of soluble biopolymer. Two-stage changes in biopolymer transformation were identified, beginning with a solubilization stage from 25 °C to 120 °C in which a biopolymer with a gel-like network structure was released into liquid phase, creating flow resistance under high shear stress such that sludge dewaterability deteriorated. The second stage was identified as a conversion stage (120 °C-200 °C) in which proteins and polysaccharides hydrolyzed and experienced a Maillard reaction, leading to the degradation of the biopolymer network structure. The newly formed recalcitrant Maillard products showed weak flow response to high shear stress, allowing for an improvement in sludge dewaterability. The pathways of a Maillard reaction were identified via gas chromatography-mass spectrometer (GC-MS), 1H nuclear magnetic resonance spectroscopy (1H NMR) and two-dimensional correlation spectral analysis (2D-COS) of Fourier-transform infrared spectrometer (FTIR), etc. Three-dimensional excitation-emission matrix (3D-EEM) proved to be an applicable method for tracking Maillard reaction in sludge hydrothermal process due to the distinctive fluorescence characteristics of Maillard products. This study further clarifies the obscure process of sludge hydrothermal treatment and will help improve the accuracy of subsequent research.


Assuntos
Reação de Maillard , Esgotos , Biopolímeros , Proteínas , Temperatura , Eliminação de Resíduos Líquidos , Água
15.
Water Res ; 189: 116652, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278721

RESUMO

The bound water in waste activated sludge (WAS) is trapped in extracellular polymeric substances (EPS) in the form of gel-like structure, leading to a great challenge in the sludge deep dewatering. Traditional flocculation conditioning is unable to destroy EPS and ineffective to remove the bound water in WAS. In this study, we employed integration of Fe(II)-sulfite oxidation and polyacrylamide flocculation (F/S-PAM) treatment for removing the bound water and improving sludge dewaterability under aerobic conditions. Meanwhile, the floc microstructure and EPS properties were examined to understand the mechanisms of F/S-PAM conditioning. F/S produced SO3·- radicals which could decompose the EPS in sludge, releasing bound water into free water. In addition, the formed Fe(III) from F/S led to re-coagulation of decomposed EPS, and C=O groups of tryptophan played the leading role in Fe-EPS association binding, causing transformation of the secondary structure of proteins (especially ß-sheets and α-helices). Then, the introduction of PAM caused re-flocculation of disintegrated sludge flocs, enhancing the sludge filterability. This work provides a novel and cost-effective method for efficient removal of bound water in sludge, and subsequence improvement in sludge dewaterability.


Assuntos
Esgotos , Águas Residuárias , Floculação , Ferro , Polímeros , Sulfitos , Eliminação de Resíduos Líquidos , Água
16.
Bioresour Technol ; 309: 123316, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32305839

RESUMO

In this study, the effect of extracellular polymer substances on the tetracycline removal under hydroxyl aluminium treatment was investigated, and the molecular mechanisms of extracellular polymeric substances mediated coagulation of tetracycline were also explored. The results show that the presence of extracellular polymeric substances could significantly enhance the removal efficiency of tetracycline in hydroxyl aluminium coagulation. Findings suggest that tyrosine and tryptophan in extracellular proteins acted as binding sites to capture tetracycline. Evidences provided by the density functional theory calculations in combination with spectroscopy analysis indicated that two main mechanisms accounted for tetracycline removal in the presence of extracellular polymeric substances and polyaluminum chloride: (1) amino group in proteins and carbonyl in tetracycline were bridged by Al3+; (2) benzene rings in tryptophan and tyrosine were π-π stacked with tetracycline, and the amino group in complexes were further coordinated with Al3+.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Purificação da Água , Alumínio , Antibacterianos , Floculação , Polímeros , Tetraciclina
17.
Chemosphere ; 243: 125333, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31734596

RESUMO

Pyrolysis carbonisation is a promising technology to convert organic waste into valuable carbon-based materials. However, sludge is generally highly compressible and difficult to dewater because of its high concentrations of biopolymers; the bound water of sludge is trapped in a network composed of biopolymers. Therefore, chemical conditioning is an indispensable step for improving sludge dewaterability performance. In the present work, the effects of different chemical conditioning agents (polymeric aluminium chloride (PACl), iron(III) chloride (FeCl3), KMnO4-Fe(II) and Fenton's reagent) on the physicochemical properties of sludge-based carbons (SBCs) were systematically studied and the SBCs were further used in advanced wastewater treatment. The adsorption mechanisms of dissolved organic matters (DOMs) by different SBCs were also investigated. The results showed that conditioning with KMnO4-Fe(II) and Fenton's reagent improved the specific surface area of the SBCs, whereas inorganic salt flocculation conditioning reduced the porosity of the SBCs. In addition, we found that the Fenton-SBC and Mn/Fe-SBC performed better than the other investigated SBCs in the removal of organic compounds from secondary effluent and that the pseudo-second-order kinetic model could better describe the process of DOMs adsorption by all of the investigated SBCs. Moreover, three-dimensional fluorescence excitation-emission matrix spectroscopy in combination with an analysis of the physical and chemical fractionation of DOMs showed that all of the SBCs performed well in the adsorption of aromatic substances, hydrophobic acids and hydrophobic neutrals, whereas the Mn/Fe-SBC and Fenton-SBC performed better than the other SBCs in the removal of weakly hydrophobic acids.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Adsorção , Biopolímeros , Carbono , Compostos Férricos , Floculação , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Compostos Orgânicos , Esgotos/química , Águas Residuárias , Água/química
18.
Sci Total Environ ; 670: 98-109, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30903908

RESUMO

Anaerobically digested sludge is generally difficult to dewater due to the release of sticky soluble microbial products in anaerobic digestion. Traditional flocculation processes have the disadvantages of high chemical dosing and solid increase, thus affecting subsequent land application. Therefore, it is desirable to develop low-cost, biodegradable, nontoxic and environmentally friendly sludge conditioners. In this work, the chitosan (CTS) was chemically modified by incorporating functional groups (amino group and the carboxyl group) to improve its water solubility and flocculation efficiency, and the anaerobically digested sludge conditioning effectiveness of different chitosan based flocculants were comparatively investigated. Results indicated that aminated chitosan (CTS-DMDAAC) and CTS performed well in sludge dewatering improvement in terms of specific resistance to filtration (SRF) and Capillary suction time (CST), which decreased to a minimum when the concentration of conditioner reached to 35 mg/g TSS. Flocs conditioned by CTS-DMDAAC were more compact and aggregated more efficiently than that flocculated with CTS and C-CTS (carboxylated chitosan). CTS-DMDAAC and CTS interacted with extracellular polymeric substance (EPS) by charge neutralization and complexation adsorption, which caused the densification of gel-like structure and enhancement of floc strength of sludge. Scanning electron microscope (SEM) analysis showed that after CTS-DMDAAC treatment, there were plentiful large pores distributed on floc surface, which provided channels for water release under pressure filtration. Confocal laser scanning microscopy (CLSM) confirmed that protein-like substances were agglomerated under flocculation conditioning, which was responsible for the promotion of sludge dewatering performance. This study provides a green and promising solution for the improvement of anaerobically digested sludge dewatering performance.


Assuntos
Quitosana/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Matriz Extracelular de Substâncias Poliméricas , Filtração , Floculação , Estrutura Molecular , Polímeros/química
19.
Chemosphere ; 218: 930-940, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30609498

RESUMO

The effects of typical sludge properties (solids concentration, soluble extracellular polymeric substances (SEPS) and alkalinity) on waste activated sludge flocculation-dewatering behavior and mechanisms under chemical conditioning with inorganic polymer flocculant-polyaluminum chloride (PACl) were systematically examined in this study. The results indicated that increasing the solids concentration was conductive to sludge dewatering and could greatly decrease the PACl demand in chemical conditioning. Solids concentration had important effects on properties of sludge floc flocculated with PACl, floc structure was more compact and of low EPS concentration at high solids concentrations. High levels of SEPS were adverse to sludge dewaterability after flocculation with PACl, since the SEPS could interact with hydroxy-aluminium through complexation and increase the demand of coagulants. In addition, advantageous speciations of hydroxy-aluminium were rapidly converted into amorphous hydroxides with low flocculation activity at high alkalinity, so the sludge conditioning efficiency was greatly declined. At the same time, the dominant mechanism of chemical conditioning was changed from charge neutralization to sweep coagulation. Finally, this study provides control strategies at complex sludge properties for improving the effectiveness of PACl as a chemical conditioner.


Assuntos
Dessecação , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Alumínio/química , Filtração , Floculação , Polímeros/química , Água/química
20.
Biomater Sci ; 6(10): 2738-2749, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30175347

RESUMO

Shape memory scaffolds are minimally invasive cell carriers that are promising biomaterials for tissue regeneration. Since cell fate is critical for successful regeneration, the influence of mechanostructural stimuli induced by shape memory on cell fate is worthy of investigation. In this study, we developed a poly(l-glutamic acid)-based (PLGA-based) shape memory porous scaffold by cross-linking PLGA with poly(ε-caprolactone)-diols (PCL-diols) and by using the particle leaching method. After regulating the cross-linking density and molecular weight of the PCL-diols, the scaffolds exhibited excellent shape memory properties around physiological temperatures. The interconnected porous structure not only enabled the scaffold to be deformed to 20% of its original size but also supported tissue invasion. In vivo results demonstrated that the PLGA-based scaffold degraded within 6 months. Cell fate studies indicated that large dimensional deformation of the porous structure during the shape memory process induced significant death, detachment and reorganization of stem cells but had negligible effects on stemness and proliferation. These results indicate that the PLGA-based shape memory porous scaffold is a potential cell carrier for tissue regeneration, and they are also meaningful to investigate the effects of mechanostructural stimuli on stem cell fate in porous structures.


Assuntos
Ácido Láctico/química , Ácido Poliglutâmico/química , Ácido Poliglicólico/química , Células-Tronco/citologia , Alicerces Teciduais , Tecido Adiposo/citologia , Animais , Materiais Biocompatíveis/química , Proliferação de Células , Sobrevivência Celular , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Ratos Sprague-Dawley , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA