Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 16: 3091-3103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953557

RESUMO

OBJECTIVE: To synthesize and determine the antifungal activity of AgBr-nanoparticles (NP) @CTMAB (cetyltrimethyl-ammonium bromide) against Candida albicans (C. albicans) for use in the field of denture cleaning. METHODS: The morphology and structure of AgBr-NP@CTMAB were characterized by IR, UV-Vis, XRD and SEM. The antifungal potential of AgBr-NP@CTMAB against C. albicans was determined by colony formation assay and growth curve analysis. PMMA containing AgBr-NP@CTMAB was prepared, and the long-term antifungal efficacy was analyzed. The effect against C. albicans biofilm was analyzed by SEM and OD600 , and the color changes of the specimens were observed by stereomicroscopy after 1 week of incubation. Cytotoxicity to human oral gingival fibroblasts and oral mucosal epithelial cells was detected by Cell Counting Kit-8 (CCK-8) in vitro. RESULTS: The compound showed a good crystalline phase, the presence of AgBr nanoparticles and the hybridization of CTMAB+ with AgBr-NPs. AgBr-NP@CTMAB showed significant antifungal activity against C. albicans at concentrations of 10 µg/mL and 20 µg/mL. PMMA specimens containing AgBr-NP@CTMAB showed no long-term antifungal effect against C. albicans biofilm. The clearance rate of C. albicans attached to PMMA was 44.73% after soaking in 10 µg/mL AgBr-NP@CTMAB solution for 30 min and 91.35% for 8 h. There was no significant residual cytotoxicity or visual color change after soaking. SIGNIFICANCE: AgBr-NP@CTMAB showed promising potential treatment for denture cleaners.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Cetrimônio/química , Nanopartículas/química , Polimetil Metacrilato/química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Técnicas de Química Sintética , Humanos , Nanotecnologia
2.
J Ethnopharmacol ; 271: 113818, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33465444

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ranunculus japonicus Thunb. (short for R. japonicus) is a topically applied herb with the activities of removing jaundice, nebula and edema, preventing malaria, stopping asthma, promoting diuresis and relieving pain. It was firstly recorded in Zhouhou Beiji Fang and has been used for the treatment of malaria, ulcers, carbuncle, jaundice, migraine, stomachache, toothache and arthritis for over 1800 years. AIM OF THE STUDY: This study aimed to uncover the potentially effective components of R. japonicus and the pharmacological mechanisms against rheumatoid arthritis (RA) by combing LC-MS and network pharmacology. MATERIALS AND METHODS: Firstly, the chemical constituents of R. japonicus were qualitatively identified by UPLC-ESI-LTQ-Orbitrap MS. Then we performed target prediction by PharmMapper, protein-protein interaction (PPI) analysis via String, GO and KEGG pathway enrichment analysis by DAVID and constructed the compound-target-pathway network using Cytoscape. Thirdly, crucial compounds in the network were quantitatively analyzed to achieve quality control of R. japonicus. Finally, the pharmacological activities of R. japonicus and two potentially bioactive ingredients were validated in RA-FLSs (Rheumatoid Arthritis Fibroblast-like Synoviocytes) in vitro. RESULTS: Overall fifty-four ingredients of R. japonicus were identified and forty-five components were firstly discovered in R. japonicus. Among them, twenty-seven validated compounds were predicted to act on twenty-five RA-related targets and they might exhibit therapeutic effects against RA via positive regulation of cell migration, etc. Nine potentially bioactive components of R. japonicus which played important roles in the compound-target-pathway network were simultaneously quantified by an optimized UPLC-ESI-Triple Quad method. In vitro, compared to control group, R. japonicus extract, berberine and yangonin significantly inhibited the migration capacity of RA-FLSs after 24 h treatment. CONCLUSION: This study clarified that R. japonicus and the bioactive ingredients berberine and yangonin might exert therapeutic actions for RA via suppressing the aggressive phenotypes of RA-FLSs through combined LC-MS technology and network pharmacology tools for the first time. The present research provided deeper understanding into the chemical profiling, pharmacological activities and quality control of R. japonicus and offered reference for further scientific research and clinical use of R. japonicus in treating RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Farmacologia/métodos , Ranunculus/química , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Fibroblastos/efeitos dos fármacos , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Espectrometria de Massas em Tandem , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA