Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 4-8, 2024 Feb 18.
Artigo em Zh | MEDLINE | ID: mdl-38318889

RESUMO

Oral diseases concern almost every individual and are a serious health risk to the population. The restorative treatment of tooth and jaw defects is an important means to achieve oral function and support the appearance of the contour. Based on the principle of "learning from the nature", Deng Xuliang's group of Peking University School and Hospital of Stomatology has proposed a new concept of "microstructural biomimetic design and tissue adaptation of tooth/jaw materials" to address the worldwide problems of difficulty in treating dentine hypersensitivity, poor prognosis of restoration of tooth defects, and vertical bone augmentation of alveolar bone after tooth loss. The group has broken through the bottleneck of multi-stage biomimetic technology from the design of microscopic features to the enhancement of macroscopic effects, and invented key technologies such as crystalline/amorphous multi-level assembly, ion-transportation blocking, and multi-physical properties of the micro-environment reconstruction, etc. The group also pioneered the cationic-hydrogel desensitizer, digital stump and core integrated restorations, and developed new crown and bridge restorative materials, gradient functionalisation guided tissue regeneration membrane, and electrically responsive alveolar bone augmentation restorative membranes, etc. These products have established new clinical strategies for tooth/jaw defect repair and achieved innovative results. In conclusion, the research results of our group have strongly supported the theoretical improvement of stomatology, developed the technical system of oral hard tissue restoration, innovated the clinical treatment strategy, and led the progress of the stomatology industry.


Assuntos
Biônica , Restauração Dentária Permanente , Doenças da Boca , Humanos
2.
J Cardiovasc Pharmacol ; 78(4): 544-550, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651601

RESUMO

INTRODUCTION: Our study aimed to investigate the effect of atorvastatin on plaque calcification by matching the results obtained by 18F-sodium fluoride (18F-NaF) positron emission tomography (PET)/computed tomography (CT) with data from histologic sections. METHODS AND RESULTS: The rabbits were divided into 2 groups as follows: an atherosclerosis group (n = 10) and an atorvastatin group (n = 10). All rabbits underwent an abdominal aortic operation and were fed a high-fat diet to induce atherosclerosis. Plasma samples were used to analyze serum inflammation markers and blood lipid levels. 18F-NaF PET/CT scans were performed twice. The plaque area, macrophage number and calcification were measured, and the data from the pathological sections were matched with the 18F-NaF PET/CT scan results. The mean standardized uptake value (0.725 ± 0.126 vs. 0.603 ± 0.071, P < 0.001) and maximum standardized uptake value (1.024 ± 0.116 vs. 0.854 ± 0.091, P < 0.001) significantly increased in the atherosclerosis group, but only slightly increased in the atorvastatin group (0.616 ± 0.103 vs. 0.613 ± 0.094, P = 0.384; 0.853 ± 0.099 vs.0.837 ± 0.089, P < 0.001, respectively). The total calcium density was significantly increased in rabbits treated with atorvastatin compared with rabbits not treated with atorvastatin (1.64 ± 0.90 vs. 0.49 ± 0.35, P < 0.001), but the microcalcification level was significantly lower. There were more microcalcification deposits in the areas with increased radioactive uptake of 18F-NaF. CONCLUSIONS: Our study suggests that the anti-inflammatory activity of atorvastatin may promote macrocalcification but not microcalcification within atherosclerotic plaques. 18F-NaF PET/CT can detect plaque microcalcifications.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Atorvastatina/toxicidade , Radioisótopos de Flúor , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Fluoreto de Sódio , Calcificação Vascular/induzido quimicamente , Animais , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Aterosclerose/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Masculino , Placa Aterosclerótica , Coelhos , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
3.
Adv Sci (Weinh) ; 11(13): e2305756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189598

RESUMO

Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.


Assuntos
Periodontite , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Porosidade , Osteogênese , Colágeno/química , Periodontite/tratamento farmacológico
4.
Adv Mater ; 36(8): e2306292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37723937

RESUMO

Nanozymes, as one of the most efficient reactive oxygen species (ROS)-scavenging biomaterials, are receiving wide attention in promoting diabetic wound healing. Despite recent attempts at improving the catalytic efficiency of Pt-based nanozymes (e.g., PtCu, one of the best systems), they still display quite limited ROS scavenging capacity and ROS-dependent antibacterial effects on bacteria or immunocytes, which leads to uncontrolled and poor diabetic wound healing. Hence, a new class of multifunctional PtCuTe nanosheets with excellent catalytic, ROS-independent antibacterial, proangiogenic, anti-inflammatory, and immuno-modulatory properties for boosting the diabetic wound healing, is reported. The PtCuTe nanosheets show stronger ROS scavenging capacity and better antibacterial effects than PtCu. It is also revealed that the PtCuTe can enhance vascular tube formation, stimulate macrophage polarization toward the M2 phenotype and improve fibroblast mobility, outperforming conventional PtCu. Moreover, PtCuTe promotes crosstalk between different cell types to form a positive feedback loop. Consequently, PtCuTe stimulates a proregenerative environment with relevant cell populations to ensure normal tissue repair. Utilizing a diabetic mouse model, it is demonstrated that PtCuTe significantly facilitated the regeneration of highly vascularized skin, with the percentage of wound closure being over 90% on the 8th day, which is the best among the reported comparable multifunctional biomaterials.


Assuntos
Diabetes Mellitus , Cicatrização , Animais , Camundongos , Espécies Reativas de Oxigênio , Pele , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/farmacologia , Hidrogéis
5.
Nat Commun ; 15(1): 487, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216556

RESUMO

Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/ß-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/ß-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect.


Assuntos
Nanofios , beta Catenina , Animais , Camundongos , Silício/farmacologia , Porosidade , Lítio/farmacologia , Ácido Silícico/farmacologia , Cemento Dentário
6.
Bioact Mater ; 20: 81-92, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35633875

RESUMO

Stem cells from human exfoliated deciduous teeth (SHED) uniquely exhibit high proliferative and neurogenic potential. Charged biomaterials have been demonstrated to promote neural differentiation of stem cells, but the dose-response effect of electrical stimuli from these materials on neural differentiation of SHED remains to be elucidated. Here, by utilizing different annealing temperatures prior to corona poling treatment, BaTiO3/P(VDF-TrFE) ferroelectric nanocomposite membranes with varying charge polarization intensity (d 33 ≈ 0, 4, 12 and 19 pC N-1) were fabricated. Enhanced expression of neural markers, increased cell elongation and more prominent neurite outgrowths were observed with increasing surface charge of the nanocomposite membrane indicating a dose-response effect of surface electrical charge on SHED neural differentiation. Further investigations of the underlying molecular mechanisms revealed that intracellular calcium influx, focal adhesion formation, FAK-ERK mechanosensing pathway and neurogenic-related ErbB signaling pathway were implicated in the enhancement of SHED neural differentiation by surface electrical charge. Hence, this study confirms the dose-response effect of biomaterial surface charge on SHED neural differentiation and provides preliminary insights into the molecular mechanisms and signaling pathways involved.

7.
Adv Mater ; 35(19): e2210637, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36756993

RESUMO

Current functional assessment of biomaterial-induced stem cell lineage fate in vitro mainly relies on biomarker-dependent methods with limited accuracy and efficiency. Here a "Mesenchymal stem cell Differentiation Prediction (MeD-P)" framework for biomaterial-induced cell lineage fate prediction is reported. MeD-P contains a cell-type-specific gene expression profile as a reference by integrating public RNA-seq data related to tri-lineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of human mesenchymal stem cells (hMSCs) and a predictive model for classifying hMSCs differentiation lineages using the k-nearest neighbors (kNN) strategy. It is shown that MeD-P exhibits an overall accuracy of 90.63% on testing datasets, which is significantly higher than the model constructed based on canonical marker genes (80.21%). Moreover, evaluations of multiple biomaterials show that MeD-P provides accurate prediction of lineage fate on different types of biomaterials as early as the first week of hMSCs culture. In summary, it is demonstrated that MeD-P is an efficient and accurate strategy for stem cell lineage fate prediction and preliminary biomaterial functional evaluation.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Humanos , Linhagem da Célula , Materiais Biocompatíveis/metabolismo , Inteligência Artificial , Diferenciação Celular/genética , Osteogênese , Aprendizado de Máquina , Condrogênese
8.
Adv Sci (Weinh) ; 10(2): e2204502, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453574

RESUMO

Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Osteoporose , Humanos , Materiais Biocompatíveis/uso terapêutico , Osteogênese , Osso e Ossos
9.
J Mater Chem B ; 11(5): 985-997, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520085

RESUMO

The maintenance and incremental growth of the alveolar bone at the tooth extraction site, to achieve the required height and width for implant restoration, remains a major clinical challenge. Here, the concept of restoring the electrical microenvironment to improve the effects of alveolar ridge preservation (ARP) was investigated in a mini-pig preclinical model. The endogeneous electrical microenvironment of the dental alveolar socket was recapitulated by fabricating a biomimetic ferroelectric BaTiO3/poly(vinylidene fluoridetrifluoroethylene) (BTO/P(VDF-TrFE)) non-resorbable nanocomposite membrane polarized by corona poling. The polarized nanocomposite membrane exhibited excellent electrical stability. After implantation with bone grafts and covering with the charged membrane in tooth extraction sites for three months, both the vertical and horizontal dimension resorption of the alveolar ridge were significantly prevented, as assessed by cone beam computed tomography (CBCT) analyses. Micro-CT analysis showed that the charged membrane induced significant enhancement of newly regenerated bone at the tooth extraction sites. Histological analysis further confirmed that the restoration of the electrical microenvironment significantly promoted buccal alveolar bone regeneration and maturation. In addition, the charged membranes can maintain their structural integrity during the entire implantation period and exhibit positive long-term systemic safety, as assessed by preclinical sub-chronic systemic toxicity. These findings thus provide an innovative strategy for restoring the electrical microenvironment to enhance ARP following dentition defect and edentulism, which could further advance prosthodontics implant technology.


Assuntos
Nanocompostos , Alvéolo Dental , Animais , Suínos , Porco Miniatura , Alvéolo Dental/patologia , Processo Alveolar/patologia , Regeneração Óssea
10.
Adv Sci (Weinh) ; 10(30): e2303207, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639212

RESUMO

Tissue-infiltrating neutrophils (TINs) secrete various signaling molecules to establish paracrine communication within the inflammatory milieu. It is imperative to identify molecular mediators that control this secretory phenotype of TINs. The present study uncovers a secretory neutrophil subset that exhibits increased pro-inflammatory cytokine production and enhanced migratory capacity which is highly related with periodontal pathogenesis. Further analysis identifies the OTU domain-containing protein 1 (OTUD1) plays a regulatory role in this secretory neutrophil polarization. In human and mouse periodontitis, the waning of inflammation is correlated with OTUD1 upregulation, whereas severe periodontitis is induced when neutrophil-intrinsic OTUD1 is depleted. Mechanistically, OTUD1 interacts with SEC23B, a component of the coat protein II complex (COPII). By removing the K63-linked polyubiquitin chains on SEC23B Lysine 81, the deubiquitinase OTUD1 negatively regulates the COPII secretory machinery and limits protein ER-to-Golgi trafficking, thus restricting the surface expression of integrin-regulated proteins, CD9 and CD47. Accordingly, blockade of protein transport by Brefeldin A (BFA) curbs recruitment of Otud1-deficient TINs and attenuates inflammation-induced alveolar bone destruction. The results thus identify OTUD1 signaling as a negative feedback loop that limits the polarization of neutrophils with secretory phenotype and highlight the potential application of BFA in the treatment of periodontal inflammation.


Assuntos
Neutrófilos , Periodontite , Animais , Humanos , Camundongos , Enzimas Desubiquitinantes , Inflamação , Neutrófilos/metabolismo , Transporte Proteico , Proteases Específicas de Ubiquitina/metabolismo
11.
Nat Commun ; 14(1): 4091, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429900

RESUMO

For bone defect repair under co-morbidity conditions, the use of biomaterials that can be non-invasively regulated is highly desirable to avoid further complications and to promote osteogenesis. However, it remains a formidable challenge in clinical applications to achieve efficient osteogenesis with stimuli-responsive materials. Here, we develop polarized CoFe2O4@BaTiO3/poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] core-shell particle-incorporated composite membranes with high magnetoelectric conversion efficiency for activating bone regeneration. An external magnetic field force conduct on the CoFe2O4 core can increase charge density on the BaTiO3 shell and strengthens the ß-phase transition in the P(VDF-TrFE) matrix. This energy conversion increases the membrane surface potential, which hence activates osteogenesis. Skull defect experiments on male rats showed that repeated magnetic field applications on the membranes enhanced bone defect repair, even when osteogenesis repression is elicited by dexamethasone or lipopolysaccharide-induced inflammation. This study provides a strategy of utilizing stimuli-responsive magnetoelectric membranes to efficiently activate osteogenesis in situ.


Assuntos
Compostos de Bário , Materiais Biocompatíveis , Masculino , Animais , Ratos , Membranas , Regeneração Óssea
12.
Int J Oral Sci ; 14(1): 13, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210393

RESUMO

The high neurogenic potential of dental and oral-derived stem cells due to their embryonic neural crest origin, coupled with their ready accessibility and easy isolation from clinical waste, make these ideal cell sources for neuroregeneration therapy. Nevertheless, these cells also have high propensity to differentiate into the osteo-odontogenic lineage. One strategy to enhance neurogenesis of these cells may be to recapitulate the natural physiological electrical microenvironment of neural tissues via electroactive or electroconductive tissue engineering scaffolds. Nevertheless, to date, there had been hardly any such studies on these cells. Most relevant scientific information comes from neurogenesis of other mesenchymal stem/stromal cell lineages (particularly bone marrow and adipose tissue) cultured on electroactive and electroconductive scaffolds, which will therefore be the focus of this review. Although there are larger number of similar studies on neural cell lines (i.e. PC12), neural stem/progenitor cells, and pluripotent stem cells, the scientific data from such studies are much less relevant and less translatable to dental and oral-derived stem cells, which are of the mesenchymal lineage. Much extrapolation work is needed to validate that electroactive and electroconductive scaffolds can indeed promote neurogenesis of dental and oral-derived stem cells, which would thus facilitate clinical applications in neuroregeneration therapy.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco Neurais , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Alicerces Teciduais
13.
Biomater Adv ; 133: 112654, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35067432

RESUMO

The development of biomimetic materials with anisotropic topological structure and wide range of adjustable mechanical properties is central to tissue engineering fields. In this work, on the basis of a stiff/stretchable dually crosslinked hydrogel, we paid more attention to the synergistic contribution of the confined drying and re-swelling (CDR) effect and Hofmeister effect to its micro structures, polymer aggregation states and mechanical strength. Specifically, by changing the pre-strains of the CDR procedure and the soaking time during the salting-out procedure, the arrangement structure orientation, chain-entanglement density, and supramolecular interaction strength within the polymer can be adjusted by changing the processing sequence of the two procedures, so that to obtain anisotropic biomimetic hydrogels with adjustable mechanical properties in a wide range. Thus, this engineered anisotropic polymer can mimic the natural tissues' mechanical properties in regeneration. Moreover and importantly, these anisotropic hydrogels exhibit prominent self-recovery properties. In summary, with the integration of molecular and structural engineering approaches, this study presents a universal strategy for developing anisotropic hydrogels, which could be widely used as biomimetic substitutes with anisotropic features in tissue regeneration.


Assuntos
Biomimética , Hidrogéis , Anisotropia , Hidrogéis/química , Polímeros , Engenharia Tecidual/métodos
14.
Front Public Health ; 10: 1046466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504985

RESUMO

Objectives: Musculoskeletal pain (MSP) is a major reason for consultation in primary care and is becoming increasingly prevalent among medical students. There is little research on the current situation of MSP among Chinese medical and dental students. Data on the analysis of risk factors related to MSP are also limited. The objectives of this study were to investigate the prevalence and characteristics of MSP among Chinese medical and dental students and to explore the risk factors for MSP and students' intent to seek medical treatment. Methods: An anonymous, internet-based, cross-sectional, open survey was distributed to medical and dental students at Fujian Medical University, Fuzhou, China. Data on the demographic information and characteristics of MSP were collected and analyzed. In addition to descriptive statistics, logistic regression was used to analyze significant risk factors contributing to MSP. Results: A total of 1,178 students responded to the survey (response rate = 79.6%), including 722 medical students and 456 dental students. The age ranged from 16 to 24. There were 553 male students and 625 female students. A total of 523 students reported neck pain (NP, 44.4%), 361 students reported low back pain (LBP, 30.6%), and 182 students reported joint pain (JP, 15.4%). Sixty-six students (5.6%) simultaneously suffered from NP, LBP, and JP. The prevalence of NP (49.1 vs. 41.4%, P = 0.01), LBP (34.6 vs. 28.1%, P = 0.02), and JP (20.2 vs. 12.5%, P < 0.001) was significantly higher in dental students than in medical students. The prevalence of MSP was significantly different among the academic years for NP and LBP (P = 0.02 and P < 0.001, respectively). Univariate and multivariate regression analyses demonstrated that female sex, PSS-10 score, and major of stomatology were risk factors for MSP. Medical and dental students' intention to seek treatment for MSP was low and was significantly associated with the severity of pain. Conclusions: The prevalence of MSP in Chinese medical and dental students is high, especially for NP and LBP, and is significantly higher in dental students than in medical students. The prevalence of NP and LBP were significantly different among academic grades. Female sex, PSS-10 score, and major of stomatology were risk factors for MSP. Students' intent to seek treatment for MSP was very low and was determined by the severity of pain.


Assuntos
Dor Musculoesquelética , Feminino , Masculino , Humanos , Estudos Transversais , Dor Musculoesquelética/epidemiologia , População do Leste Asiático , Estudantes de Odontologia , Povo Asiático
15.
Nat Commun ; 13(1): 4419, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906221

RESUMO

Tooth whitening has recently become one of the most popular aesthetic dentistry procedures. Beyond classic hydrogen peroxide-based whitening agents, photo-catalysts and piezo-catalysts have been demonstrated for non-destructive on-demand tooth whitening. However, their usage has been challenged due to the relatively limited physical stimuli of light irradiation and ultrasonic mechanical vibration. To address this challenge, we report here a non-destructive and convenient tooth whitening strategy based on the pyro-catalysis effect, realized via ubiquitous oral motion-induced temperature fluctuations. Degradation of organic dyes via pyro-catalysis is performed under cooling/heating cycling to simulate natural temperature fluctuations associated with intake and speech. Teeth stained by habitual beverages and flavorings can be whitened by the pyroelectric particles-embedded hydrogel under a small surrounding temperature fluctuation. Furthermore, the pyro-catalysis-based tooth whitening procedure exhibits a therapeutic biosafety and sustainability. In view of the exemplary demonstration, the most prevalent oral temperature fluctuation will enable the pyro-catalysis-based tooth whitening strategy to have tremendous potential for practical applications.


Assuntos
Clareamento Dental , Dente , Catálise , Peróxido de Hidrogênio , Temperatura , Clareamento Dental/métodos
16.
Adv Mater ; 34(18): e2109580, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229371

RESUMO

Lipid-membrane-targeting strategies hold great promise to develop broad-spectrum antivirals. However, it remains a big challenge to identify novel membrane-based targets of viruses and virus-infected cells for development of precision targeted approaches. Here, it is discovered that viroporins, viral-encoded ion channels, which have been reported to mediate release of hydrogen ions, trigger membrane acidification of virus-infected cells. Through development of a fine-scale library of gradient pH-sensitive (GPS) polymeric nanoprobes, the cellular membrane pH transitions are measured from pH 6.8-7.1 (uninfection) to pH 6.5-6.8 (virus-infection). In response to the subtle pH alterations, the GPS polymer with sharp response at pH 6.8 (GPS6.8 ) selectively binds to virus-infected cell membranes or the viral envelope, and even completely disrupts the viral envelope. Accordingly, GPS6.8 treatment exerts suppressive effects on a wide variety of viruses including SARS-CoV-2 through triggering viral-envelope lysis rather than affecting immune pathway or viability of host cells. Murine viral-infection models exhibit that supplementation of GPS6.8 decreases viral titers and ameliorates inflammatory damage. Thus, the gradient pH-sensitive nanotechnology offers a promising strategy for accurate detection of biological pH environments and robust interference with viruses.


Assuntos
COVID-19 , Vírus , Animais , Antivirais/farmacologia , Concentração de Íons de Hidrogênio , Camundongos , Polímeros/farmacologia , SARS-CoV-2 , Proteínas Viroporinas , Vírus/metabolismo
17.
Sci Prog ; 104(1): 36850420987058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33427082

RESUMO

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.

18.
Arch Oral Biol ; 131: 105252, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500260

RESUMO

OBJECTIVE: To sequentially track mandibular defect repair by using radiographic and histological techniques, so as to compare repair patterns of sensory denervated versus innervated mandibles. DESIGN: Forty Sprague-Dawley rats were subjected to unilateral inferior alveolar nerve (IAN) axotomy and bilateral 3 mm full-thickness circular osteotomy of their mandibles. Micro-CT and histological staining were applied to track the repair process of the mandibular defects at 1, 2, 4, and 8 weeks after surgery. RESULTS: The bone volume of both sides increased by 2 weeks post-operation, and then gradually decreased. The new bone volumes of the axotomy side were significantly less than that of the sham side at 1, 2, and 4 weeks post-surgery, whereas no significant differences were detected at 8 weeks post-surgery. Meanwhile, there were no significant differences in bone mineral density between the two sides during repair. Noteworthy, the repaired bone remained more vertically than horizontally aligned throughout the repair process. CONCLUSION: IAN axotomy decreases the quantity of bone calluses during the early stage of mandibular defect repair, but with no effect on the degree of mineralization. The shape of the defect area appeared to be aligned with the direction of local mechanical force produced by masticatory muscles.


Assuntos
Mandíbula , Nervo Mandibular , Animais , Axotomia , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Nervo Mandibular/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
19.
J Mater Chem B ; 8(45): 10221-10256, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33084727

RESUMO

The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Carbono/química , Condutividade Elétrica , Humanos , Nanoestruturas/química , Polímeros/química , Engenharia Tecidual/métodos
20.
Nat Commun ; 11(1): 1328, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165627

RESUMO

The increasing demand for a whiter smile has resulted in an increased popularity for tooth whitening procedures. The most classic hydrogen peroxide-based whitening agents are effective, but can lead to enamel demineralization, gingival irritation, or cytotoxicity. Furthermore, these techniques are excessively time-consuming. Here, we report a nondestructive, harmless and convenient tooth whitening strategy based on a piezo-catalysis effect realized by replacement of abrasives traditionally used in toothpaste with piezoelectric particles. Degradation of organic dyes via piezo-catalysis of BaTiO3 (BTO) nanoparticles was performed under ultrasonic vibration to simulate daily tooth brushing. Teeth stained with black tea, blueberry juice, wine or a combination thereof can be notably whitened by the poled BTO turbid liquid after vibration for 3 h. A similar treatment using unpoled or cubic BTO show negligible tooth whitening effect. Furthermore, the BTO nanoparticle-based piezo-catalysis tooth whitening procedure exhibits remarkably less damage to both enamel and biological cells.


Assuntos
Clareamento Dental , Catálise , Proliferação de Células , Humanos , Índigo Carmim , Nanopartículas/química , Nanopartículas/ultraestrutura , Espectrofotometria Ultravioleta , Escovação Dentária , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA