Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2217734120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888661

RESUMO

Degradable polymer matrices and porous scaffolds provide powerful mechanisms for passive, sustained release of drugs relevant to the treatment of a broad range of diseases and conditions. Growing interest is in active control of pharmacokinetics tailored to the needs of the patient via programmable engineering platforms that include power sources, delivery mechanisms, communication hardware, and associated electronics, most typically in forms that require surgical extraction after a period of use. Here we report a light-controlled, self-powered technology that bypasses key disadvantages of these systems, in an overall design that is bioresorbable. Programmability relies on the use of an external light source to illuminate an implanted, wavelength-sensitive phototransistor to trigger a short circuit in an electrochemical cell structure that includes a metal gate valve as its anode. Consequent electrochemical corrosion eliminates the gate, thereby opening an underlying reservoir to release a dose of drugs by passive diffusion into surrounding tissue. A wavelength-division multiplexing strategy allows release to be programmed from any one or any arbitrary combination of a collection of reservoirs built into an integrated device. Studies of various bioresorbable electrode materials define the key considerations and guide optimized choices in designs. In vivo demonstrations of programmed release of lidocaine adjacent the sciatic nerves in rat models illustrate the functionality in the context of pain management, an essential aspect of patient care that could benefit from the results presented here.


Assuntos
Implantes Absorvíveis , Sistemas de Liberação de Medicamentos , Ratos , Animais , Eletrônica , Polímeros
2.
Small ; 19(49): e2305017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528504

RESUMO

Eco/bioresorbable electronics represent an emerging class of technology defined by an ability to dissolve or otherwise harmlessly disappear in environmental or biological surroundings after a period of stable operation. The resulting devices provide unique capabilities as temporary biomedical implants, environmental sensors, and related systems. Recent publications report schemes to overcome challenges in fabrication that follow from the low thermostability and/or high chemical reactivity of the eco/bioresorbable constituent materials. Here, this work reports the use of high-speed sewing machines, as the basis for a high-throughput manufacturing technique that addresses many requirements for these applications, without the need for high temperatures or reactive solvents. Results demonstrate that a range of eco/bioresorbable metal wires and polymer threads can be embroidered into complex, user-defined conductive patterns on eco/bioresorbable substrates. Functional electronic components, such as stretchable interconnects and antennas are possible, along with fully integrated systems. Examples of the latter include wirelessly powered light-emitting diodes, radiofrequency identification tags, and temporary cardiac pacemakers. These advances add to a growing range of options in high-throughput, automated fabrication of eco/bioresorbable electronics.


Assuntos
Implantes Absorvíveis , Eletrônica , Metais , Polímeros , Solventes
3.
Anal Biochem ; 512: 103-109, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27555440

RESUMO

Development of a simple method for preparation of stable open tubular (OT) columns for proteins separation by capillary electrochromatography is still challenging. In this work, the titanium oxide (TiO2) nanoparticles coated OT column was successfully prepared for separation of proteins by capillary electrochromatography. The polydopamine (PDA) film was first formed in the inner surface of a fused-silica capillary by the self-polymerization of dopamine under alkaline conditions. Then the TiO2 coating was deposited onto the surface of pre-modified capillary with PDA by a liquid phase deposition process. The plentifully active hydroxyl groups in PDA coating can chelate with Ti(4+) to boost the nucleation and growth of TiO2 film. The as-prepared TiO2 coated OT column was characterized by scanning electron microscopy and measurement of electroosmotic flow. Furthermore, the influence of liquid phase deposition time on the TiO2 coating was investigated. The TiO2 coated OT column was used for successful separation of two variants of ß-lactoglobulin and eight glycoisoforms of ovalbumin. The column demonstrated good repeatability and stability. The relative standard deviations of migration times of proteins representing run-to-run, day-to-day, and column-to-column were less than 3.7%. Moreover, the application of the column was verified by successful separation of acidic proteins in egg white.


Assuntos
Eletrocromatografia Capilar/métodos , Indóis/química , Lactoglobulinas/isolamento & purificação , Ovalbumina/isolamento & purificação , Polímeros/química , Titânio/química , Lactoglobulinas/química , Nanopartículas , Ovalbumina/química
4.
J Colloid Interface Sci ; 670: 486-498, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772264

RESUMO

Establishing a physical barrier between the peritoneum and the cecum is an effective method to reduce the risk of postoperative abdominal adhesions. Meloxicam (MX), a nonsteroidal anti-inflammatory drug has also been applied to prevent postoperative adhesions. However, its poor water solubility has led to low bioavailability. Herein, we developed an injectable hydrogel as a barrier and drug carrier for simultaneous postoperative adhesion prevention and treatment. A third-generation polyamide-amine dendrimer (G3) was exploited to dynamically combine with MX to increase the solubility and the bioavailability. The formed G3@MX was further used to crosslink with poly-γ-glutamic acid (γ-PGA) to prepare a hydrogel (GP@MX hydrogel) through the amide bonding. In vitro and in vivo experiments evidenced that the hydrogel had good biosafety and biodegradability. More importantly, the prepared hydrogel could control the release of MX, and the released MX is able to inhibit inflammatory responses and balance the fibrinolytic system in the injury tissues in vivo. The tunable rheological and mechanical properties (compressive moduli: from âˆ¼ 57.31 kPa to âˆ¼ 98.68 kPa;) and high anti-oxidant capacity (total free radical scavenging rate of âˆ¼ 94.56 %), in conjunction with their syringeability and biocompatibility, indicate possible opportunities for the development of advanced hydrogels for postoperative tissue adhesions management.


Assuntos
Dendrímeros , Hidrogéis , Meloxicam , Nylons , Ácido Poliglutâmico , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , Ácido Poliglutâmico/análogos & derivados , Nylons/química , Aderências Teciduais/prevenção & controle , Dendrímeros/química , Dendrímeros/farmacologia , Meloxicam/química , Meloxicam/farmacologia , Meloxicam/administração & dosagem , Camundongos , Inflamação/prevenção & controle , Inflamação/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fibrinólise/efeitos dos fármacos , Complicações Pós-Operatórias/prevenção & controle , Tamanho da Partícula , Injeções , Portadores de Fármacos/química
5.
Biomaterials ; 197: 380-392, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30703743

RESUMO

Systemic lupus erythematosus (SLE) constitutes an autoimmune disease characterized by the breakdown of tolerance to self-antigens, sustained production of pathogenic autoantibodies, and damage to multiple organs and tissues. Nanoparticle (NP)-based therapeutics have demonstrated efficacy in attenuating the progression of SLE. However, investigations of nano-drugs that address the crucial initiating factor in the pathogenesis of SLE; e.g., inefficient clearance of apoptotic cells by phagocytes and consequent accumulation of self-antigens, have seldom been reported. Here, an apoptotic cell-mimicking gold nanocage (AuNC)-based nano drug carrier capable of correcting the impaired clearance of apoptotic cells in SLE was rationally designed and generated by conjugating phosphatidylserine (PS) on the surface of liposome-coated AuNCs for liver X receptor (LXR) agonist T0901317 delivery. Notably, PS-lipos-AuNC@T0901317 could efficiently enhance apoptotic cell clearance by elevating the expression of Mer, one of the pivotal phagocytosis-associated receptors on macrophages, resulting in decreased production of anti-dsDNA autoantibodies, reduced inflammatory response, and alleviation of kidney damage in lupus model mice. Additionally, PS-lipos-AuNC could be tracked by photoacoustic imaging for nano drug carrier biodistribution. By addressing the crucial pathogenic factor of SLE, the NP-based delivery system in this study is envisioned to provide a promising strategy to treat this complex and challenging disease.


Assuntos
Apoptose , Sistemas de Liberação de Medicamentos , Ouro/administração & dosagem , Hidrocarbonetos Fluorados/administração & dosagem , Receptores X do Fígado/agonistas , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nanocápsulas/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , Autoanticorpos/análise , Citocinas/metabolismo , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Feminino , Ouro/farmacocinética , Hidrocarbonetos Fluorados/uso terapêutico , Hidrocarbonetos Fluorados/toxicidade , Lipossomos/administração & dosagem , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Fosfatidilserinas , Sulfonamidas/uso terapêutico , Sulfonamidas/toxicidade , Distribuição Tecidual , c-Mer Tirosina Quinase/biossíntese , c-Mer Tirosina Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA