Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Aesthetic Plast Surg ; 40(6): 926-930, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27734116

RESUMO

OBJECTIVE: This study aimed to investigate the clinical application and efficacy of local injection of botulinum toxin A (BTX-A) at the depressor anguli oris in patients with congenital drooping mouth corner. METHODS: From September 2013 to March 2015, 36 cosmetic patients received local injections of botulinum toxin A at the depressor anguli oris, with 1-3 injection sites in the moving region of the depressor anguli oris on each side. At each injection site, 2-4 U of BTX-A was injected, and the total dose for any unilateral treatment did not exceed 8 U. The change in the degree of drooping of the mouth corner before and after the injection was analyzed using statistical methods. The clinical efficacy, preservation time, and adverse reactions were observed. RESULTS: The degree of drooping of the mouth corners of the cosmetic patients before the treatment was compared with that at 1 month after using a paired t test, and the difference was statistically significant, with P < 0.01. The treatment results were satisfactory, and the effect was preserved for 6-9 months. None of the 36 cosmetic patients had any complications of bruising, infection, dysfunction in opening and closing the mouth, smile asymmetry, drooling, or dysarthria after the injection. CONCLUSIONS: The local injection of BTX-A at the depressor anguli oris can effectively lift a drooping mouth corner, thereby improving the depressed, stern, and aged appearance of the face. The performance of this treatment is simple, safe, and easy to perform in clinical applications. LEVEL OF EVIDENCE V: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Assimetria Facial/congênito , Assimetria Facial/tratamento farmacológico , Músculos Faciais/efeitos dos fármacos , Adulto , Estudos de Coortes , Estética , Expressão Facial , Músculos Faciais/fisiopatologia , Feminino , Humanos , Injeções Intramusculares , Lábio/efeitos dos fármacos , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
2.
Mar Environ Res ; 195: 106381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286076

RESUMO

Microplastics (MPs) have become a popular research topic due to their potential ramifications on aquatic organisms. To evaluate the ecotoxicological impacts of chronic exposure to different microplastics on marine medaka larvae, we exposed medaka larvae to 200 µg/L of polyethylene (PE-200) and polylactic acid (PLA-200) microplastics for 60 days, respectively. The results indicated that both exposures had no significant effect on fish length/weight and did not result in fish mortality. Notably, the structure of intestinal microbiota was not disrupted either. However, microscopy observations of intestinal tissue suggested that exposure to MPs resulted in inflammation of the intestinal tract of fish and significant atrophy and shedding of small intestinal villus. Linear discriminant analysis Effect Size (LEfSe) showed that intestinal enrichment of Streptomyces occurred in marine medaka larvae in both MPs treatments, while the PE-200 treatment exhibited a significant enrichment. In addition, the PICRUSt2 prediction indicated significant upregulation of the Novobiocin biosynthesis function in gut microbiota in the PE-200 treatment. Overall, multi-level assessment is necessary to determine the risk of exposure of aquatic organisms to MPs.


Assuntos
Microbiota , Oryzias , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos , Oryzias/fisiologia , Larva , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos
3.
Sci Total Environ ; 850: 157772, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934030

RESUMO

As global pollution, microplastics pollution has aroused growing concerns. In our experiment, the effect of microplastics acute exposure on the liver of swordtail fish was investigated by using LC-MS metabolomics. Fishes treated with high concentration polystyrene microspheres (1 µm) for 72 h were divided into three concentration groups: (A) no microplastics, (B): 1 × 106 microspheres L-1, (C): 1 × 107 microspheres L-1. Metabolomic analysis indicated that exposure to microplastics caused alterations of metabolic profiles in swordtail fish, including 37 differential metabolites were identified in B vs. A, screened out ten significant metabolites, which involved 14 metabolic pathways. One hundred three differential metabolites were identified in C vs. A, screened out 16 significant metabolites, which involved 30 metabolic pathways. Six significant metabolites were overlapping in group B vs. A and C vs. A; they are 3-hydroxyanthranilic acid, l-histidine, citrulline, linoleic acid, pantothenate, and xanthine. In addition, four metabolic pathways are overlapping in group B vs. A and C vs. A; they are beta-alanine metabolism, biosynthesis of amino acids, linoleic acid metabolism, and aminoacyl-tRNA biosynthesis. These differential metabolites were involved in oxidative stress, immune function, energy metabolism, sugar metabolism, lipid metabolism, molecule transport, and weakened feed utilization, growth performance, nutrient metabolism, and animal growth. Furthermore, we found that the number of interfered amino acids and microplastics showed a dose-effect. In summary, great attention should be paid to the potential impact of microplastics on aquatic organisms.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/farmacologia , Animais , Cromatografia Líquida , Citrulina/metabolismo , Citrulina/farmacologia , Ciprinodontiformes/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/farmacologia , Fígado/metabolismo , Metabolômica , Microplásticos/toxicidade , Plásticos/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , RNA de Transferência/metabolismo , RNA de Transferência/farmacologia , Açúcares/metabolismo , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/metabolismo , Xantinas/metabolismo , Xantinas/farmacologia , beta-Alanina/metabolismo , beta-Alanina/farmacologia
4.
J Control Release ; 347: 1-13, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35508221

RESUMO

Some chemotherapy can damage tumor cells, releasing damage-related molecular patterns including ATP to improve immunological recognition against the tumor by immunogenic cell death (ICD). However, the immune-stimulating ATP may be rapidly degraded into immunosuppressive adenosine by highly expressed CD39 and CD73 in the tumor microenvironment, which leads to immune escape. Based on the above paradox, a liposome nanoplatform combined with ICD inducer (oxaliplatin) and CD39 inhibitor (POM-1) is designed for immunochemotherapy. The liposomes efficiently load the phospholipid-like oxaliplatin prodrug, and the cationic charged surface could adsorb POM-1. Rationally designed DSPE-PEGn-pep, on the one hand, could cover and hide POM-1 to avoid systematic toxicity and, on the other, achieve a response and charge reversal to favor POM-1 shedding and tumor deep penetration. This combination maximizes the ICD effect, and takes two-pronged advantage of stimulating the immune response and relieving immune suppression. The designed POL can effectively inhibit the growth of in situ, lung metastasis and postoperative recurrence melanoma model and form long-term immune memory. With the powerful clinical transformation potential of nanoliposome platforms, this new synergistic strategy is expected to enhance anticancer effects safely and effectively.


Assuntos
Melanoma , Microambiente Tumoral , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoterapia , Lipossomos , Melanoma/tratamento farmacológico , Oxaliplatina
5.
J Zhejiang Univ Sci B ; 23(9): 778-783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111574

RESUMO

To increase the efficiency and accuracy of clinical tumor detection, we explored multiple imaging by preparing carbon quantum dot (CQD)-loaded nanobubbles for ultrasonic fluorescence dual detection. In this experiment, we prepared 1,2-dioleoyl3-trimethylammonium-propane chloride (DOTAP) cationic liposomes using the film dispersion method and chose perfluoropentane as the core gas material of the nanobubbles. The nanobubbles were coupled with the negatively charged CQDs through the charge effect to prepare the testing agent for two-way diagnosis with ultrasound contrast and fluorescence detection. The formulation and preparation of the loaded CQD liposome nanobubbles were screened. In vivo experiments showed that nanobubbles can be enriched to the tumor site within 5 min, which enables clearer ultrasound imaging and is conducive to tumor detection. We expect CQD-loaded liposome (Lip-CQD) nanobubbles to become a new ultrasonic contrast agent for clinical applications that can provide a basis for early tumor diagnosis and thus earlier treatment.


Assuntos
Neoplasias , Pontos Quânticos , Carbono , Cloretos , Meios de Contraste , Fluorescência , Humanos , Lipossomos , Neoplasias/diagnóstico , Propano , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA