Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Adv Res ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37597747

RESUMO

INTRODUCTION: Periodontal regeneration, specifically the restoration of the cementum-periodontal ligament (PDL)-alveolar bone complex, remains a formidable challenge in the field of regenerative dentistry. In light of periodontal development, harnessing the multi-tissue developmental capabilities of periodontal ligament cells (PDLCs) and reinitiating the periodontal developmental process hold great promise as an effective strategy to foster the regeneration of the periodontal complex. OBJECTIVES: This study aims to delve into the potential effects of the macrophage-mediated immune microenvironment on the "developmental engineering" regeneration strategy and its underlying molecular mechanisms. METHODS: In this study, we conducted a comprehensive examination of the periodontium developmental process in the rat mandibular first molar using histological staining. Through the induction of diverse immune microenvironments in macrophages, we evaluated their potential effects on periodontal re-development events using a cytokine array. Additionally, we investigated PDLC-mediated periodontal re-development events under these distinct immune microenvironments through transcriptome sequencing and relevant functional assays. Furthermore, the underlying molecular mechanism was also performed. RESULTS: The activation of development-related functions in PDLCs proved challenging due to their declined activity. However, our findings suggest that modulating the macrophage immune response can effectively regulate PDLCs-mediated periodontium development-related events. The M1 type macrophage immune microenvironment was found to promote PDLC activities associated with epithelial-mesenchymal transition, fiber degradation, osteoclastogenesis, and inflammation through the Wnt, IL-17, and TNF signaling pathways. Conversely, the M2 type macrophage immune microenvironment demonstrated superiority in inducing epithelium induction, fibers formation, and mineralization performance of PDLCs by upregulating the TGFß and PI3K-Akt signaling pathway. CONCLUSION: The results of this study could provide some favorable theoretical bases for applying periodontal development engineering strategy in resolving the difficulties in periodontal multi-tissue regeneration.

2.
Langmuir ; 25(21): 12454-9, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19856987

RESUMO

Characterization of systemic performance of gold nanostructures is critical to the advancement of biomedical applications of these nanomaterials as imaging or therapeutic agents. The accuracy of current in vitro methods, however, is limited by interanimal variability. We present a novel method capable of monitoring the pharmacokinetics of PEGylated gold nanorods (GNRs) in the same animal by using intravital two-photon luminescence (TPL) imaging of GNRs flowing through a surface blood vessel. The TPL imaging with high speed and submicrometer resolution allowed for studying the clearance of GNRs as a function of surface coating. PEGylated-GNRs (PEG-NRs) were found to exhibit a biphasic clearance mode, with a significantly prolonged blood residence time for branched poly(ethylene glycol) (PEG) as compared to the linear PEG. With spectral detection to distinguish GNR TPL from tissue autofluorescence, we also mapped the cellular distribution of GNRs in the explanted organs, and found most GNRs resided in the macrophages in liver and spleen.


Assuntos
Ouro/química , Nanotubos , Animais , Ouro/farmacocinética , Fígado/metabolismo , Luminescência , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Baço/metabolismo
3.
PLoS One ; 9(4): e96041, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759735

RESUMO

Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus.


Assuntos
Arsenitos/toxicidade , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/genética , Compostos de Sódio/toxicidade , Fluoreto de Sódio/toxicidade , Memória Espacial/efeitos dos fármacos , Animais , Arsenitos/sangue , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/sangue , Ácido Glutâmico/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Compostos de Sódio/sangue , Fluoreto de Sódio/sangue , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA