Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 16(12): 10046-58, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22143573

RESUMO

Transglutaminase (TGase) was cross-linked with glutaraldehyde, and cross-linked crystalline transglutaminase was immobilized on a polypropylene microporous membrane by UV-induced grafting. Immobilized enzyme activity were calculated to be 0.128 U/cm² polypropylene microporous membrane. The microstructure and enzyme characteristics of free, cross-linked and immobilized transglutaminase were compared. The optimum temperature of free transglutaminase was determined to be approximately 40 °C, while cross-linking and immobilization resulted in an increase to approximately 45 °C and 50 °C. At 60 °C, immobilized, cross-linked and free transglutaminase retained 91.7 ± 1.20%, 63.2 ± 1.05% and 37.9 ± 0.98% maximum activity, respectively. The optimum pH was unaffected by the state of transglutaminase. However, the thermal and pH stabilities of cross-linked and immobilized transglutaminase were shown to increase.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/ultraestrutura , Membranas Artificiais , Polipropilenos/química , Transglutaminases/metabolismo , Transglutaminases/ultraestrutura , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Porosidade , Temperatura
2.
Bioresour Technol ; 342: 126002, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34852445

RESUMO

In this study, two denitrification bio-filters adopted polycaprolactone (PCL) and sodium acetate (NaAc) as polymer and water-soluble carbon sources respectively. With the increasing influent nitrate concentrations, NaAc bio-filter always had shorter HRT to achieve complete nitrate removal. Furthermore, the optimal volumetric denitrification rate in NaAc bio-filter was 0.728 g N/(L·d), which was higher than 0.561 g N/(L·d) in PCL bio-filter. For nitrates removal, the costs of bio-filters supported by NaAc and PCL were 24.93 and 120.25 CNY/kg N respectively. Although Proteobacteria in PCL bio-filter was abundant with 83.98%, NaAc bio-filter had better denitrification performance, due to the appropriate ratio of nitrate removal microorganisms and organic matters degradation organisms. The total abundance value of the denitrification genera is NaAc (16.06%) < PCL (41.19%). However, PCL bio-filter had poor denitrification performance, due to the lower adequacy of PCL depolymerization enzymes and the low expression of the key genes for denitrification.


Assuntos
Desnitrificação , Nitratos , Biofilmes , Reatores Biológicos , Carbono , Elétrons , Polímeros , Água
3.
Chemosphere ; 255: 126901, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32387904

RESUMO

Enhanced nitrate removal from the secondary effluent in municipal wastewater treatment plants (WWTPs) is essential for avoiding water eutrophication. To this end, a vertical baffled solid-phase denitrification reactor (VBSDR) was developed using a starch and polycaprolactone (PCL) blend plate (S-PCL) as a carbon source and biofilm carrier. In this study, we evaluated the denitrification performance and microbial diversity of the VBSDR. The results of the Fourier transform infrared spectroscopy (FTIR), carbon leaching experiment, and scanning electron microscopy (SEM) demonstrated that the S-PCL structure can be attached and degraded more rapidly. Furthermore, the denitrification performance under varied operational conditions, i.e., influent nitrate loading rate (NLR) and operating temperature, was also investigated. Herein, when treating low C/N ratio and low-strength wastewater, a high denitrification rate (DR) [0.33 gN/(L·d)] was achieved. The effect of temperature on DR can be described by the Arrhenius-type equation, which shows that low temperature has a negative influence on DR and nitrate removal efficiency. Furthermore, DR was simultaneously affected by the NLR and temperature. The microbial diversity and community structure were determined by Illumina high-throughput sequencing. The special carbon source led to Acidovorax (denitrifying bacteria) and Flavobacterium (hydrolysis acidifying bacteria) being the VBSDR biofilm's most predominant functional bacteria at the genus level.


Assuntos
Poliésteres/química , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Reatores Biológicos/microbiologia , Carbono/química , Comamonadaceae , Desnitrificação , Nitratos/química , Nitrogênio/química , Amido/química , Temperatura , Águas Residuárias/química
4.
PLoS One ; 9(9): e106652, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187980

RESUMO

Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.


Assuntos
Encéfalo/metabolismo , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Flavanonas/química , Glutationa/química , Hesperidina/química , Humanos , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA