Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(14): e2200371, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460333

RESUMO

Efficient delivery of biomacromolecules or drugs across the cell membrane via endocytosis usually encounters inevitable entrapment in endosomes and subsequent degradation in lyso-endosomes. To address this issue, a series of arginine-rich cell penetrating polymers is designed and synthesized, which internalize into cells by inducing the formation of pores on the cell membrane, thereby crossing the cell membrane via direct translocation that fundamentally avoids endo/lysosomal entrapment. The structure-activity relationship studies show that PTn-R2-C6, which is a type of polymer that has two arginine residues and a flexible hexanoic acid linker in each side chain, exhibits excellent pore-formation ability on the cell membrane. Further investigations indicate that PTn-R2-C6 rapidly transports plasmid DNAs into cytosol through a similar endocytosis-independent pathway, thereby achieving significantly higher transfection efficiency and lower cytotoxicity than the gold-standard transfection reagent PEI 25K. These results suggest the great potential of PTn-R2-C6 as a safe and efficient gene transfection reagent for wide applications including disease treatments, vaccine development, and biomedical research purposes.


Assuntos
Arginina , Polímeros , Membrana Celular/metabolismo , Endossomos/metabolismo , Polímeros/metabolismo , Transfecção
2.
Adv Mater ; 34(23): e2201945, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35385590

RESUMO

Antimicrobial peptides (AMPs) hold great potential for use in tumor treatment. However, developing AMP-based antitumor therapies is challenging due to circulatory instability, hemolytic toxicity, low selectivity, and poor cell permeability of AMPs. In this study, a polymeric carrier for AMPs (denoted as PAMPm -co-PPBEn /PCA) is presented that effectively enhances their anticancer efficacy while minimizing their potential side effects. By integrating multiple responsive structures at the molecular level, the carrier finely controls the spatial distribution of AMPs in different biological microenvironments, thereby effectively modulating their membranolytic ability. Upon employing KLA as the model AMP, the polymeric carrier's hemolytic toxicity during blood circulation is suppressed, its cellular internalization when reaching tumor tissues facilitated, and its membranolytic toxicity toward the mitochondria upon entering cancer cells restored and further enhanced. Animal studies indicate that this approach significantly improves the antitumor efficacy of KLA and reduces its toxicity. Considering that the loading method for most AMPs is identical to that of KLA, the polymeric carrier reported in this study may provide a feasible approach for the development of AMP-based cancer treatments.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Neoplasias , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Neoplasias/tratamento farmacológico , Polímeros/química
3.
Adv Mater ; 34(3): e2107161, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767279

RESUMO

The release of tumor-associated antigens (TAAs) and their cross-presentation in dendritic cells (DCs) are crucial for radio-immunotherapy. However, the irradiation resistance of tumor cells usually results in limited TAA generation and release. Importantly, TAAs internalized by DCs are easily degraded in lysosomes, resulting in unsatisfactory extent of TAA cross-presentation. Herein, an antigen-capturing stapled liposome (ACSL) with a robust structure and bioactive surface is developed. The ACSLs capture and transport TAAs from lysosomes to the cytoplasm in DCs, thereby enhancing TAA cross-presentation. l-arginine encapsulated in ACSLs induces robust T cell-dependent antitumor response and immune memory in 4T1 tumor-bearing mice after local irradiation, resulting in significant tumor suppression and an abscopal effect. Replacing l-arginine with radiosensitizers, photosensitizers, and photothermal agents may make ACSL a universal platform for the rapid development of various combinations of anticancer therapies.


Assuntos
Apresentação Cruzada , Lipossomos , Animais , Antígenos de Neoplasias , Células Dendríticas , Imunoterapia/métodos , Lipossomos/metabolismo , Camundongos
4.
ACS Appl Mater Interfaces ; 13(19): 22159-22168, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33955217

RESUMO

Antibodies have shown potential to deplete immunosuppressive factors in tumor tissues. However, intrinsic drawbacks, including time-consuming processes in preparation, high cost, and short half-life time, greatly restrict their applications. In this work, we report an antibody-like polymeric nanoparticle (APN) that is capable of specifically capturing and removing galectin-1 in tumor tissues, thereby enhancing the antitumor T-cell responses. The APN is composed of an albumin-polymer hybrid nanoparticle (core) and an acid-responsive PEG shell. The core of the APN contains multiple recognition units and Tuftsin peptides to capture target factors and activate macrophage-mediated phagocytosis, respectively. By employing galactose as recognition units, the APN facilitated the phagocytosis of galectin-1 in tumor tissues, thereby improving the antitumor responses of tumor-infiltrating T cells. Since the recognition units in the APN can be further replaced to capture and remove other peptides/proteins, the APN provides a feasible approach for the development of synthetic nanoformulations to regulate biological systems and treat diseases.


Assuntos
Galectina 1/isolamento & purificação , Imunoterapia/métodos , Nanopartículas/química , Neoplasias/terapia , Polímeros/química , Animais , Linhagem Celular Tumoral , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , Fagocitose , Células RAW 264.7 , Microambiente Tumoral/imunologia
5.
Biomater Sci ; 7(7): 2986-2995, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31106796

RESUMO

Because of their abnormal vasculature and the dense tumor extra-cellular matrix, solid tumors prevent the deep and uniform penetration of nanocarriers. Numerous studies have shown that nanocarriers with a positively charged surface exhibit enhanced tumor penetration. Therefore, a hypoxia responsive nanocarrier [responsive micelles (RMs)] was developed, which can gradually increase the positive surface charge by responding to hypoxia gradients, and eventually achieve deep penetration in tumors. The nanocarrier was composed of a poly(caprolactone) core and a mixed shell of poly(ethylene glycol) (PEG) and 4-nitrobenzyl chloroformate (NBCF)-modified polylysine (PLL). During the blood circulation, the NBCF-modified PLL was shielded by the PEG, which gave it the ability to inhibit its rapid removal by the immune system. After reaching the tumor, the hypoxia microenvironment triggered partial NBCF degradation that recovered the amine groups of PLL, leading to a remarkable change in the surface to a positively charged one that enabled the penetration of the nanocarrier into the tumor. As the nanocarrier penetrated into the interior of the tumor, the decrease in oxygen concentration led to the further degradation of the NBCF-modified PLL, resulting in the increase of the positive surface charge which further facilitated the deep penetration. The subsequent in vitro and in vivo experiments certified that RM/doxorubicin had a better penetration ability and improved inhibition efficacy on tumor tissues, which demonstrated its potential application in cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Hipóxia Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Micelas , Oxigênio/metabolismo , Tamanho da Partícula , Polímeros/química , Distribuição Tecidual
6.
Adv Mater ; 31(32): e1902542, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31183900

RESUMO

Current cancer immunotherapies including chimeric antigen receptor (CAR)-based therapies and checkpoint immune inhibitors have demonstrated significant clinical success, but always suffer from immunotoxicity and autoimmune disease. Recently, nanomaterial-based immunotherapies are developed to precisely control in vivo immune activation in tumor tissues for reducing immune-related adverse events. However, little consideration has been put on the spatial modulation of interactions between immune cells and cancer cells to optimize the efficacy of cancer immunotherapies. Herein, a rational design of immunomodulating nanoparticles is demonstrated that can in situ modify the tumor cell surface with natural killer cell (NK cell)-activating signals to achieve in situ activation of tumor-infiltrating NK cells, as well as direction of their antitumor immunity toward tumor cells. Using these immunomodulating nanoparticles, the remarkable inhibition of tumor growth is observed in mice without noticeable side effects. This study provides an accurate immunomodulation strategy that achieves safe and effective antitumor immunity through in situ NK cell activation in tumors. Further development by constructing interactions with various immune cells can potentially make this nanotechnology become a general platform for the design of advanced immunotherapies for cancer treatments.


Assuntos
Membrana Celular/imunologia , Fatores Imunológicos/química , Células Matadoras Naturais/metabolismo , Nanopartículas/química , Resinas Acrílicas/química , Animais , Ácidos Borônicos/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/química , Imunoglobulina G/química , Imunoterapia , Células Matadoras Naturais/imunologia , Camundongos , Transplante de Neoplasias , Polímeros/química , Soroalbumina Bovina/química , Propriedades de Superfície
7.
Nanoscale ; 11(18): 9163-9175, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038150

RESUMO

Diabetes is a chronic metabolic disorder disease characterized by high blood glucose levels and has become one of the most serious threats to human health. In recent decades, a number of insulin delivery systems, including bulk gels, nanogels, and polymeric micelles, have been developed for the treatment of diabetes. Herein, a kind of glucose and H2O2 dual-responsive polymeric nanogel was designed for enhanced glucose-responsive insulin delivery. The polymeric nanogels composed of poly(ethylene glycol) and poly(cyclic phenylboronic ester) (glucose and H2O2 dual-sensitive groups) were synthesized by a one-pot thiol-ene click chemistry approach. The nanogels displayed glucose-responsive release of insulin and the release rate could be promoted by the incorporation of glucose oxidase (GOx), which generated H2O2 at high glucose levels and H2O2 further oxidizes and hydrolyzes the phenylboronic ester group. The nanogels have characteristics of long blood circulation time, a fast response to glucose, and excellent biocompatibility. Moreover, subcutaneous delivery of insulin to diabetic mice with the insulin/GOx-loaded nanogels presented an effective hypoglycemic effect compared to that of injection of insulin or insulin-loaded nanogels. This kind of nanogel would be a promising candidate for the delivery of insulin in the future.


Assuntos
Glucose Oxidase/química , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Polietilenoglicóis/química , Polietilenoimina/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Química Click , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Portadores de Fármacos/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose/química , Glucose Oxidase/metabolismo , Teste de Tolerância a Glucose , Peróxido de Hidrogênio/química , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Insulina/química , Insulina/uso terapêutico , Camundongos , Células NIH 3T3 , Nanogéis , Polietilenoglicóis/toxicidade , Polietilenoimina/toxicidade
8.
Adv Mater ; 31(51): e1905751, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31709671

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) enzyme, Cas13a, holds great promise in cancer treatment due to its potential for selective destruction of tumor cells via collateral effects after target recognition. However, these collateral effects do not specifically target tumor cells and may cause safety issues when administered systemically. Herein, a dual-locking nanoparticle (DLNP) that can restrict CRISPR/Cas13a activation to tumor tissues is described. DLNP has a core-shell structure, in which the CRISPR/Cas13a system (plasmid DNA, pDNA) is encapsulated inside the core with a dual-responsive polymer layer. This polymer layer endows the DLNP with enhanced stability during blood circulation or in normal tissues and facilitates cellular internalization of the CRISPR/Cas13a system and activation of gene editing upon entry into tumor tissue. After carefully screening and optimizing the CRISPR RNA (crRNA) sequence that targets programmed death-ligand 1 (PD-L1), DLNP demonstrates the effective activation of T-cell-mediated antitumor immunity and the reshaping of immunosuppressive tumor microenvironment (TME) in B16F10-bearing mice, resulting in significantly enhanced antitumor effect and improved survival rate. Further development by replacing the specific crRNA of target genes can potentially make DLNP a universal platform for the rapid development of safe and efficient cancer immunotherapies.


Assuntos
Antígeno B7-H1/genética , Terapia Genética/métodos , Imunoterapia/métodos , Nanopartículas , Receptor de Morte Celular Programada 1/genética , Animais , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Terapia de Alvo Molecular , Nanopartículas/química , Plasmídeos/genética , Polietilenoglicóis/química , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA