Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Stem Cells ; 34(6): 1576-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26866635

RESUMO

Vasculogenesis is the process of de novo blood vessel formation observed primarily during embryonic development. Emerging evidence suggest that postnatal mesenchymal stem cells are capable of recapitulating vasculogenesis when these cells are engaged in tissue regeneration. However, the mechanisms underlining the vasculogenic differentiation of mesenchymal stem cells remain unclear. Here, we used stem cells from human permanent teeth (dental pulp stem cells [DPSC]) or deciduous teeth (stem cells from human exfoliated deciduous teeth [SHED]) as models of postnatal primary human mesenchymal stem cells to understand mechanisms regulating their vasculogenic fate. GFP-tagged mesenchymal stem cells seeded in human tooth slice/scaffolds and transplanted into immunodeficient mice differentiate into human blood vessels that anastomize with the mouse vasculature. In vitro, vascular endothelial growth factor (VEGF) induced the vasculogenic differentiation of DPSC and SHED via potent activation of Wnt/ß-catenin signaling. Further, activation of Wnt signaling is sufficient to induce the vasculogenic differentiation of postnatal mesenchymal stem cells, while Wnt inhibition blocked this process. Notably, ß-catenin-silenced DPSC no longer differentiate into endothelial cells in vitro, and showed impaired vasculogenesis in vivo. Collectively, these data demonstrate that VEGF signaling through the canonical Wnt/ß-catenin pathway defines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016;34:1576-1587.


Assuntos
Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Via de Sinalização Wnt , Animais , Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Polpa Dentária/citologia , Combinação de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Laminina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos SCID , Neovascularização Fisiológica/efeitos dos fármacos , Proteoglicanas/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
2.
Dent J (Basel) ; 11(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37504226

RESUMO

This work aimed to evaluate the effect of Semaphorin 4D (SEMA4D) signaling through Plexin B1 on the vasculogenic differentiation of dental pulp stem cells. We assessed the protein expression of SEMA4D and Plexin B1 in dental pulp stem cells (DPSC) from permanent human teeth and stem cells from human exfoliated deciduous (SHED) teeth using Western blots. Their expression in human dental pulp tissues and DPSC-engineered dental pulps was determined using immunofluorescence. We then exposed dental pulp stem cells to recombinant human SEMA4D (rhSEMA4D), evaluated the expression of endothelial cell differentiation markers, and assessed the vasculogenic potential of rhSEMA4D using an in vitro sprouting assay. Lastly, Plexin B1 was silenced to ascertain its role in SEMA4D-mediated vasculogenic differentiation. We found that SEMA4D and Plexin B1 are expressed in DPSC, SHED, and human dental pulp tissues. rhSEMA4D (25-100 ng/mL) induced the expression of endothelial markers, i.e., vascular endothelial growth factor receptor (VEGFR)-2, cluster of differentiation (CD)-31, and tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie)-2, in dental pulp stem cells and promoted capillary-like sprouting in vitro (p < 0.05). Furthermore, Plexin B1 silencing abrogated the vasculogenic differentiation of dental pulp stem cells and significantly inhibited capillary sprouting upon exposure to rhSEMA4D. Collectively, these data provide evidence that SEMA4D induces vasculogenic differentiation of dental pulp stem cells through Plexin B1 signaling.

3.
J Mater Chem B ; 11(17): 3823-3835, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36946228

RESUMO

Regenerative endodontics represents a paradigm shift in dental pulp therapy for necrotic young permanent teeth. However, there are still challenges associated with attaining maximum root canal disinfection while supporting angiogenesis and preserving resident stem cells viability and differentiation capacity. Here, we developed a hydrogel system by incorporating antibiotic-eluting fiber-based microparticles in gelatin methacryloyl (GelMA) hydrogel to gather antimicrobial and angiogenic properties while prompting minimum cell toxicity. Minocycline (MINO) or clindamycin (CLIN) was introduced into a polymer solution and electrospun into fibers, which were further cryomilled to attain MINO- or CLIN-eluting fibrous microparticles. To obtain hydrogels with multi-therapeutic effects, MINO- or CLIN-eluting microparticles were suspended in GelMA at distinct concentrations. The engineered hydrogels demonstrated antibiotic-dependent swelling and degradability while inhibiting bacterial growth with minimum toxicity in dental-derived stem cells. Notably, compared to MINO, CLIN hydrogels enhanced the formation of capillary-like networks of endothelial cells in vitro and the presence of widespread vascularization with functioning blood vessels in vivo. Our data shed new light onto the clinical potential of antibiotic-eluting gelatin methacryloyl hydrogel as an injectable scaffold with multi-therapeutic effects to promote antimicrobial disinfection and angiogenesis for regenerative endodontics.


Assuntos
Anti-Infecciosos , Endodontia Regenerativa , Células Endoteliais , Desinfecção , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Clindamicina , Minociclina
4.
Front Cell Dev Biol ; 10: 977725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340037

RESUMO

A functional vascular network requires that blood vessels are invested by mural cells. We have shown that dental pulp stem cells (DPSC) can undergo vasculogenic differentiation, and that the resulting vessels anastomize with the host vasculature and become functional (blood carrying) vessels. However, the mechanisms underlying the maturation of DPSC-derived blood vessels remains unclear. Here, we performed a series of studies to understand the process of mural cell investment of blood vessels generated upon vasculogenic differentiation of dental pulp stem cells. Primary human DPSC were co-cultured with primary human umbilical artery smooth muscle cells (HUASMC) in 3D gels in presence of vasculogenic differentiation medium. We observed DPSC capillary sprout formation and SMC recruitment, alignment and remodeling that resulted in complex vascular networks. While HUASMC enhanced the number of capillary sprouts and stabilized the capillary network when co-cultured with DPSC, HUASMC by themselves were unable to form capillary sprouts. In vivo, GFP transduced human DPSC seeded in biodegradable scaffolds and transplanted into immunodeficient mice generated functional human blood vessels invested with murine smooth muscle actin (SMA)-positive, GFP-negative cells. Inhibition of PDGFR-ß signaling prevented the SMC investment of DPSC-derived capillary sprouts in vitro and of DPSC-derived blood vessels in vivo. In contrast, inhibition of Tie-2 signaling did not have a significant effect on the SMC recruitment in DPSC-derived vascular structures. Collectively, these results demonstrate that PDGF-BB signaling via PDGFR-ß regulates the process of maturation (mural investment) of blood vessels generated upon vasculogenic differentiation of human dental pulp stem cells.

5.
Cell Death Dis ; 12(7): 644, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168122

RESUMO

Dental pulp stem cells (DPSC) are capable of differentiating into vascular endothelial cells. Although the capacity of vascular endothelial growth factor (VEGF) to induce endothelial differentiation of stem cells is well established, mechanisms that maintain stemness and prevent vasculogenic differentiation remain unclear. Here, we tested the hypothesis that p53 signaling through p21 and Bmi-1 maintains stemness and inhibits vasculogenic differentiation. To address this hypothesis, we used primary human DPSC from permanent teeth and Stem cells from Human Exfoliated Deciduous (SHED) teeth as models of postnatal mesenchymal stem cells. DPSC seeded in biodegradable scaffolds and transplanted into immunodeficient mice generated mature human blood vessels invested with smooth muscle actin-positive mural cells. Knockdown of p53 was sufficient to induce vasculogenic differentiation of DPSC (without vasculogenic differentiation medium containing VEGF), as shown by increased expression of endothelial markers (VEGFR2, Tie-2, CD31, VE-cadherin), increased capillary sprouting in vitro; and increased DPSC-derived blood vessel density in vivo. Conversely, induction of p53 expression with small molecule inhibitors of the p53-MDM2 binding (MI-773, APG-115) was sufficient to inhibit VEGF-induced vasculogenic differentiation. Considering that p21 is a major downstream effector of p53, we knocked down p21 in DPSC and observed an increase in capillary sprouting that mimicked results observed when p53 was knocked down. Stabilization of ubiquitin activity was sufficient to induce p53 and p21 expression and reduce capillary sprouting. Interestingly, we observed an inverse and reciprocal correlation between p53/p21 and the expression of Bmi-1, a major regulator of stem cell self-renewal. Further, direct inhibition of Bmi-1 with PTC-209 resulted in blockade of capillary-like sprout formation. Collectively, these data demonstrate that p53/p21 functions through Bmi-1 to prevent the vasculogenic differentiation of DPSC.


Assuntos
Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Polpa Dentária/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Complexo Repressor Polycomb 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Movimento Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Polpa Dentária/citologia , Polpa Dentária/efeitos da radiação , Células Endoteliais/transplante , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos SCID , Complexo Repressor Polycomb 1/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Transplante de Células-Tronco , Alicerces Teciduais , Proteína Supressora de Tumor p53/genética , Ubiquitinação
6.
Cells ; 10(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831027

RESUMO

Understanding how Mesenchymal Stem Cells (MSCs) form blood vessels is critical for creating mechanism-based approaches for the therapeutic use of these cells. In addition, understanding the determinants and factors involved in lineage hierarchy is fundamental to creating accurate and reliable techniques for the study of stem cells in tissue engineering and repair. Dental Pulp Stem Cells (DPSC) from permanent teeth and Stem cells from Human Exfoliated Deciduous teeth (SHED) are particularly interesting sources for tissue engineering as they are easily accessible and expandable. Previously, we have shown that DPSCs and SHEDs can differentiate into endothelial cells and form functional blood vessels through vasculogenesis. Here, we described how we created the "pulpbow" (pulp + rainbow), a multicolor tag experimental model that is stable, permanent, unique to each cell and passed through generations. We used the pulpbow to understand how dental pulp stem cells contributed to blood vessel formation in 3D models in in vitro and ex vivo live cell tracking, and in vivo transplantation assays. Simultaneous tracking of cells during sprout formation revealed that no single multicolor-tagged cell was more prone to vasculogenesis. During this process, there was intense cell motility with minimal proliferation in early time points. In later stages, when the availability of undifferentiated cells around the forming sprout decreased, there was local clonal proliferation mediated by proximity. These results unveiled that the vasculogenesis process mediated by dental pulp stem cells is dynamic and proximity to the sprouting area is critical for cell fate decisions.


Assuntos
Técnicas de Cultura de Células/métodos , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Animais , Cor , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Camundongos SCID , Fatores de Tempo
7.
J Endod ; 46(9S): S56-S62, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32950196

RESUMO

INTRODUCTION: The maintenance of a stem cell pool is imperative to enable healing processes in the dental pulp tissue throughout life. As such, knowing mechanisms underlying stem cell self-renewal is critical to understand pulp pathophysiology and pulp regeneration. The purpose of this study was to evaluate the impact of stem cell factor (SCF) signaling through its receptor tyrosine kinase (c-Kit) on the self-renewal of human dental pulp stem cells (hDPSCs). METHODS: The hDPSCs were stably transduced with lentiviral vectors expressing shRNA-c-Kit or vector control. The impact of the SCF/c-Kit axis on hDPSC self-renewal was evaluated by using a pulpsphere assay in low attachment conditions and by evaluating the expression of polycomb complex protein Bmi-1 (master regulator of self-renewal) by Western blot and flow cytometry. RESULTS: The c-Kit-silenced hDPSCs formed fewer pulpspheres when compared with hDPSCs transduced with control vector (P < .05). Evaluation of pulpsphere morphology revealed the presence of 3 distinct sphere types, ie, holospheres, merospheres, and paraspheres. Although c-Kit silencing decreased the number of holospheres compared with control cells (P < .05), it had no effect on the number of merospheres and paraspheres. Recombinant human stem cell factor (rhSCF) increased the number of holospheres (P < .05) and induced dose-dependent Bmi-1 expression in hDPSCs. As expected, the inductive capacity of rhSCF on Bmi-1 expression and fraction of Bmi-1-positive cells was inhibited when we silenced c-Kit in hDPSCs. CONCLUSIONS: These results unveiled the role of SCF/c-Kit signaling on the self-renewal of hDPSCs and suggested that this pathway enables long-term maintenance of stem cell pools in human dental pulps.


Assuntos
Polpa Dentária , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Transdução de Sinais
8.
J Endod ; 45(7): 882-889, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31133343

RESUMO

INTRODUCTION: This study aimed to compare the cytocompatibility and angiogenic potential of 2 antibiotics (clindamycin [CLIN] and minocycline [MINO]) at distinct concentrations on dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs). METHODS: DPSCs and HUVECs were exposed to cell culture media modified with CLIN or MINO at concentrations ranging from 30 µg/mL-1000 µg/mL. Cell toxicity and proliferation were investigated using the lactate dehydrogenase and tetrazolium reduction assays, respectively. A capillarylike tube formation in vitro assay was conducted to determine the angiogenic potential associated with each antibiotic. Additionally, selected morphometric angiogenesis parameters were determined using dedicated software (WimTube; Onimagin Technologies SCA, Córdoba, Spain). All statistical analyses were performed using 1-way analysis of variance and the Tukey post hoc test (α= .05). RESULTS: The collected data showed that compared with the control (cell culture media, alpha-minimum essential medium Eagle) increasing the antibiotic concentration significantly decreased cell viability and proliferation of both DPSCs and HUVECs. In terms of angiogenic potential, when tested at 30 µg/mL and 50 µg/mL, CLIN significantly amplified tube formation when compared with MINO with angiogenesis parameters (ie, tube length and tube number) similar to the effect promoted by exogenous vascular endothelial growth factor (50 ng/mL). CONCLUSIONS: CLIN was less cytotoxic when compared with MINO at higher concentrations. Of note, CLIN did not hinder the proangiogenic activity induced by vascular endothelial growth factor to the same extent as MINO, suggesting that the replacement of MINO by CLIN might translate into positive implications in the overall regenerative outcome.


Assuntos
Antibacterianos , Clindamicina , Minociclina , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Proliferação de Células , Células Cultivadas , Clindamicina/farmacologia , Clindamicina/toxicidade , Polpa Dentária/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Minociclina/farmacologia , Minociclina/toxicidade , Neovascularização Fisiológica , Espanha , Fator A de Crescimento do Endotélio Vascular
9.
J Endod ; 43(9S): S25-S30, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28778505

RESUMO

The aim of this study was to evaluate the effects of Wnt signaling through lipoprotein receptor-related protein 6 (LRP6) and Frizzled6 on the endothelial differentiation of dental pulp stem cells (DPSCs). DPSCs were stably transduced with enhanced green fluorescent protein (EGFP)-tagged lentiviral vectors (short hairpin RNA-LRP6, short hairpin RNA-Frizzled6, or empty vector controls). We evaluated the effects of LRP6 and Frizzled6 on expression of endothelial markers and on capillary tube formation mediated by DPSCs induced with recombinant human Wnt1 (rhWnt1) and/or recombinant human vascular endothelial growth factor165 (rhVEGF165). In vivo, tooth slices/scaffolds were seeded with LRP6-silenced, Frizzled6-silenced, or vector control DPSC cells and transplanted into immunodeficient mice. The density of blood vessels generated by DPSCs differentiated into vascular endothelial cells was analyzed by immunohistochemistry for EGFP. The rhWnt1 and rhVEGF165 induced expression of active ß-catenin in control DPSCs and in Frizzled6-silenced DPSCs, but not in LRP6-silenced DPSCs. Furthermore, VEGF and interleukin-8 were downregulated in LRP6-silenced DPSCs, but not in control DPSCs or in Frizzled6-silenced DPSCs (P < .05). Likewise, rhWnt1 and rhVEGF165 induced expression of the endothelial marker VEGF receptor-2 in control DPSCs and in Frizzled6-silenced DPSCs, but not in LRP6-silenced DPSCs. These data correlated with a trend for lower density of capillary sprouts generated by LRP6-silenced DPSCs when compared with control DPSCs in Matrigel. In vivo, tooth slice/scaffolds seeded with DPSC-short hairpinRNA-LRP6 cells showed lower density of human blood vessels (ie, EGFP-positive blood vessels), when compared with tooth slice/scaffolds seeded with vector control cells (P < .05). Collectively, these data demonstrated that LRP6 signaling is necessary for the vasculogenic differentiation of human DPSCs.


Assuntos
Diferenciação Celular/fisiologia , Polpa Dentária/citologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Transdução de Sinais , Células-Tronco/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Fator A de Crescimento do Endotélio Vascular , Via de Sinalização Wnt
10.
Tissue Eng Part C Methods ; 18(11): 821-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22563788

RESUMO

Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell-matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further investigate whether this enamel-like surface can support the differentiation and mineralization of DPSCs, and, therefore, act as a potential model for studying the enamel/dentin interface and, perhaps, dentine/pulp regeneration in tooth tissue engineering. The human pathway-focused osteogenesis polymerase chain reaction (PCR) array demonstrated that the expression of osteogenesis-related genes of human DPSCs was increased on FA surfaces compared with that on etched stainless steel (SSE). Consistent with the PCR array, FA promoted mineralization compared with the SSE surface with or without the addition of a mineralization promoting supplement (MS). This was confirmed by alkaline phosphatase (ALP) staining, Alizarin red staining, and tetracycline staining for mineral formation. In conclusion, FA crystal surfaces, especially ordered (OR) FA surfaces, which mimicked the physical architecture of enamel, provided a favorable extracellular matrix microenvironment for the cells. This resulted in the differentiation of human DPSCs and mineralized tissue formation, and, thus, demonstrated that it may be a promising biomimetic model for dentin-pulp tissue engineering.


Assuntos
Apatitas/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Esmalte Dentário/química , Polpa Dentária/citologia , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Antraquinonas/metabolismo , Apatitas/química , Proliferação de Células/efeitos dos fármacos , Fluorescência , Humanos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Reação em Cadeia da Polimerase , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Coloração e Rotulagem , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Células-Tronco/ultraestrutura , Tetraciclina/metabolismo
11.
J Endod ; 36(10): 1633-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20850667

RESUMO

INTRODUCTION: Trauma can result in the severing of the dental pulp vessels, leading to hypoxia and ultimately to pulp necrosis. Improved understanding of mechanisms underlying the response of dental pulp cells to hypoxic conditions might lead to better therapeutic alternatives for patients with dental trauma. The purpose of this study was to evaluate the effect of hypoxia on the angiogenic response mediated by human dental pulp stem cells (DPSCs) and human dental pulp fibroblasts (HDPFs). METHODS: DPSCs and HDPFs were exposed to experimental hypoxic conditions. Hypoxia-inducible transcription factor-1alpha (HIF-1alpha) was evaluated by Western blot and immunocytochemistry, whereas vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) expression was evaluated by enzyme-linked immunosorbent assay. YC-1, an inhibitor of HIF-1alpha, was used to evaluate the functional effect of this transcriptional factor on hypoxia-induced VEGF expression. Conditioned medium from hypoxic and normoxic pulp cells was used to stimulate human dermal microvascular endothelial cells (HDMECs). HDMEC proliferation was measured by WST-1 assay, and angiogenic potential was evaluated by a capillary sprouting assay in 3-dimensional collagen matrices. RESULTS: Hypoxia enhanced HIF-1alpha and VEGF expression in DPSCs and HDPFs. In contrast, hypoxia did not induce bFGF expression in pulp cells. YC-1 partially inhibited hypoxia-induced HIF-1alpha and VEGF in these cells. The growth factor milieu of hypoxic HDPFs (but not hypoxic DPSCs) induced endothelial cell proliferation and sprouting as compared with medium from normoxic cells. CONCLUSIONS: Collectively, these data demonstrate that hypoxia induces complex and cell type-specific pro-angiogenic responses and suggest that VEGF (but not bFGF) participates in the revascularization of hypoxic dental pulps.


Assuntos
Células-Tronco Adultas/metabolismo , Hipóxia Celular/fisiologia , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Neovascularização Fisiológica/fisiologia , Células Cultivadas , Endotélio Vascular/citologia , Fibroblastos/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Regeneração/fisiologia , Transdução de Sinais , Estatísticas não Paramétricas , Fator A de Crescimento do Endotélio Vascular/biossíntese
12.
J Endod ; 36(11): 1805-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20951292

RESUMO

INTRODUCTION: Dental pulp tissue engineering is an emerging field that can potentially have a major impact on oral health. However, the source of morphogens required for stem cell differentiation into odontoblasts and the scaffold characteristics that are more conducive to odontoblastic differentiation are still unclear. This study investigated the effect of dentin and scaffold porogen on the differentiation of human dental pulp stem cells (DPSCs) into odontoblasts. METHODS: Poly-L-lactic acid (PLLA) scaffolds were prepared in pulp chambers of extracted human third molars using salt crystals or gelatin spheres as porogen. DPSCs seeded in tooth slice/scaffolds or control scaffolds (without tooth slice) were either cultured in vitro or implanted subcutaneously in immunodefficient mice. RESULTS: DPSCs seeded in tooth slice/scaffolds but not in control scaffolds expressed putative odontoblastic markers (DMP-1, DSPP, and MEPE) in vitro and in vivo. DPSCs seeded in tooth/slice scaffolds presented lower proliferation rates than in control scaffolds between 7 and 21 days (p < 0.05). DPSCs seeded in tooth slice/scaffolds and transplanted into mice generated a tissue with morphological characteristics similar to those of human dental pulps. Scaffolds generated with gelatin or salt porogen resulted in similar DPSC proliferation. The porogen type had a relatively modest impact on the expression of the markers of odontoblastic differentiation. CONCLUSIONS: Collectively, this work shows that dentin-related morphogens are important for the differentiation of DPSC into odontoblasts and for the engineering of dental pulp-like tissues and suggest that environmental cues influence DPSC behavior and differentiation potential.


Assuntos
Polpa Dentária/citologia , Dentina/fisiologia , Células-Tronco/fisiologia , Alicerces Teciduais , Adolescente , Animais , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Cavidade Pulpar/anatomia & histologia , Proteínas da Matriz Extracelular/análise , Gelatina/química , Glicoproteínas/análise , Humanos , Ácido Láctico/química , Masculino , Camundongos , Camundongos SCID , Odontoblastos/citologia , Fosfoproteínas/análise , Poliésteres , Polímeros/química , Porosidade , Sialoglicoproteínas/análise , Cloreto de Sódio/química , Transplante de Células-Tronco , Tela Subcutânea/cirurgia , Propriedades de Superfície , Técnicas de Cultura de Tecidos , Engenharia Tecidual , Alicerces Teciduais/química , Adulto Jovem
13.
J Endod ; 34(8): 962-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18634928

RESUMO

Stem cells from human exfoliated deciduous teeth (SHED) have been isolated and characterized as multipotent cells. However, it is not known whether SHED can generate a dental pulp-like tissue in vivo. The purpose of this study was to evaluate morphologic characteristics of the tissue formed when SHED seeded in biodegradable scaffolds prepared within human tooth slices are transplanted into immunodeficient mice. We observed that the resulting tissue presented architecture and cellularity that closely resemble those of a physiologic dental pulp. Ultrastructural analysis with transmission electron microscopy and immunohistochemistry for dentin sialoprotein suggested that SHED differentiated into odontoblast-like cells in vivo. Notably, SHED also differentiated into endothelial-like cells, as demonstrated by B-galactosidase staining of cells lining the walls of blood-containing vessels in tissues engineered with SHED stably transduced with LacZ. This work suggests that exfoliated deciduous teeth constitute a viable source of stem cells for dental pulp tissue engineering.


Assuntos
Polpa Dentária/irrigação sanguínea , Polpa Dentária/citologia , Células-Tronco Multipotentes/transplante , Neovascularização Fisiológica , Engenharia Tecidual , Animais , Diferenciação Celular , Células Cultivadas , Células Endoteliais/transplante , Proteínas da Matriz Extracelular/biossíntese , Humanos , Óperon Lac , Masculino , Camundongos , Camundongos SCID , Odontoblastos/citologia , Fosfoproteínas , Regeneração , Sialoglicoproteínas , Alicerces Teciduais , Dente Decíduo , Transdução Genética , beta-Galactosidase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA