Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 374: 128737, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36781146

RESUMO

Magnetic granular activated carbon (MGAC), a nano-Fe3O4 modified granular activated carbon, was used as the carrier in an anaerobic fluidized-bed membrane bioreactor (AFMBR) to promote domestic wastewater treatment efficiency and alleviate membrane biofouling. Chemical oxygen demand (COD) removal reached 89 ± 2.6% with the effluent concentration of 20 ± 3.9 mg/L in the MGAC-AFMBR, while it was 28 ± 5.2 mg/L in AFMBR at hydraulic retention time (HRT) of 4 h. Total nitrogen (TN) removal was also enhanced by 4.0% with MGAC. An increased proportion of Chloroflexi and Bacteroidetes in the sludge may be responsible for improved treatment performance. MGAC reduced the protein and polysaccharide content in extracellular polymeric substances (EPS) by 9.8% and 8.1%, respectively. Besides, Bacteroidetes and Proteobacteria abundance decreased by 4.0% and 16.6% in the membrane cake layer with MGAC addition. Therefore, the high-quality effluent and low membrane biofouling of AFMBR was sustained by MGAC.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos , Carvão Vegetal , Anaerobiose , Membranas Artificiais , Esgotos/microbiologia , Reatores Biológicos/microbiologia
2.
Chemosphere ; 268: 129363, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360935

RESUMO

Magnetic seeding coagulation (MSC) process has been used to accelerate flocs sedimentation with an applied magnetic field, offering large handling capacity and low energy consumption. The interactions of three typical Al species, aluminum chloride (AlCl3), Al13O4(OH)247+ polymer (Al13), and (AlO4)2Al28(OH)5618+ polymer (Al30), with magnetic particles (MPs) were examined to clarify the MSC process. In traditional coagulation (TC) process, the aggregation of primary Ala-dissolved organic matter (DOM) complexes with in-situ-formed polynuclear species generated a large average floc size (226 µm), which was proved to be efficient for DOC removal (52.6%). The weak connections between dissolved Ala-DOM complexes and MPs led to the negligible changes of dissolved Al after seeding with MPs in AlCl3. A significant interaction between MPs and Al13 was observed, in which the MPs-Al13-DOM complexes were proposed to be responsible for the significant improvement of DOC removal (from 47% to 52%) and residual total Al reduction (from 1.05 to 0.27 mg Al L-1) with MPs addition. Al30 produced a lower floc fractal dimension (Df = 1.88) than AlCl3 (2.08) and Al13 (1.99) in the TC process, whereas its floc strength (70.9%) and floc recovery (38.5%) were higher than the others. Although more detached fragments were produced with MPs addition, the effective sedimentation of these fragments with the applied magnetic field led to the decrease of residual turbidity and colloidal Al in Al30. The dependence of coagulation behavior to MPs and different Al species can be applied to guide the application of an effective MSC process.


Assuntos
Purificação da Água , Alumínio , Cloreto de Alumínio , Floculação , Fenômenos Magnéticos , Polímeros
3.
Environ Pollut ; 242(Pt B): 1669-1677, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077404

RESUMO

We describe a batch-extraction with simulated digestive fluid (salivary fluid, gastric fluid and intestinal fluid) to estimate the bioaccessibility of inhaled trace metals (TMs) in particulate matter less than 10 and 2.5 µm in aerodynamic diameter (PM10 and PM2.5). Concentrations of the assayed TMs (As, Cd, Cr, Ni, Mn, Cu, Zn, Sb, Hg and Pb) were determined in PM10 and PM2.5 samples by inductively coupled plasma-mass spectrometry. The TMs with the largest soluble fractions for airborne PM collected from winter and summer in saliva were Mn and Sb, respectively; in seasons this became Co in gastric fluid and Cu in intestinal fluid. Clearly, bioaccessibility is strongly dependent on particle size, the component of simulated digestive fluids (e.g., pH, digestive enzymes pepsin and trypsin), and the chemical properties of metal ions. The particle size and seasonal variation affected the inhaled bioaccessible fraction of PM-bound TMs during mucociliary clearance, which transported PM from the tracheal and the bronchial region to the digestive system. This study provides direct evidence for TMs in airborne PM being bioaccessible TMs are likely to possess an enhanced digestive toxic potential due to airborne PM pollution.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Metais Pesados/análise , Material Particulado/análise , Poluentes Atmosféricos/química , Arsênio/química , Disponibilidade Biológica , China , Cidades , Monitoramento Ambiental , Suco Gástrico/química , Humanos , Exposição por Inalação , Secreções Intestinais/química , Metais Pesados/química , Tamanho da Partícula , Material Particulado/química , Saliva/química , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA