Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 220: 118672, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35635920

RESUMO

Ultrafiltration (UF) was often used as pretreatment in front of reverse osmosis (RO) unit because of its high rejection efficiency of microbes and particles. However, in some cases UF pretreatment might show adverse effects on the RO membrane flux. In this study, the effects of UF pretreatment on secondary effluent water quality and its RO membrane fouling characteristics were explored. There was almost no change of water quality after UF with different molecular weight cut-off (MWCO) membranes (100, 30 and 10 kDa), including total dissolved solid (TDS), alkalinity, conductivity, ion concentrations, etc., while pH increased a little and dissolved organic carbon (DOC) declined by about 1 mg/L. On the contrary, the RO membrane flux of UF permeates presented clear decline in comparison to the secondary effluent. The membrane fouling velocity and steady-state flux of secondary effluent was 0.052 and 0.656, while fouling velocity increased (0.077, 0.071, 0.067) and steady-state flux decreased significantly (0.397, 0.416, 0.448) after 100, 30, 10 kDa UF membrane pretreatment. Scanning electron microscope (SEM) images showed many crystals on the fouled membrane surfaces, which turned out to be CaCO3 by Energy dispersive spectrometer (EDS) analysis and precipitation calculation. After the addition of UF retentates to UF permeates, scaling was prevented and crystals on the RO membrane almost disappeared, which implied the anti-scaling effect of the UF retentates with low concentration. According to anti-scaling performance experiments, the anti-scaling performance of 100 k, 30 k, 10 k retentates was 2.7%, 4.0% and 7.3%, respectively. Excitation emission matrix (EEM) and fourier transform infra-red (FTIR) results showed that these retentates retained by different MWCO membranes were similar and composed of protein-like substances and soluble microbial products. The effect of key minority components in RO system deserved further exploration.


Assuntos
Ultrafiltração , Purificação da Água , Filtração , Membranas Artificiais , Osmose , Ultrafiltração/métodos , Purificação da Água/métodos
2.
Sci Total Environ ; 844: 157079, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35779720

RESUMO

Membrane fouling is the Achilles' heel of the reverse osmosis (RO) system for high-quality reclaimed water production. Previous studies have found that after the significant selection effect of traditional disinfection, the remaining disinfection-residual bacteria (DRB) may possess more severe biofouling potentials. To provide more constructive advice for the prevention of biofouling, we compared the RO membrane fouling characteristics of DRB after using five commonly used disinfection methods (NaClO, NH2Cl, ClO2, UV, and O3) and two novel disinfection methods (K2FeO4 and the flow-through electrode system (FES)). Compared with the control group (undisinfected, 21.1 % flux drop), the UV-DRB biofilm aggravated biofouling of the RO membrane (23.4 % flux drop), while the FES, K2FeO4, and NH2Cl treatments showed less severe biofouling, with final flux drops of 6.9 %, 8.1 %, and 8.1 %, respectively. Adenosine triphosphate (ATP) was found to be a capable indicator for predicting the biofouling potential of DRB. Systematic analysis showed that the thickness and density of the DRB biofilms were most closely related to the different fouling degree of RO membranes. Moreover, the relative abundance of bacteria with higher extracellular polymeric substance (EPS) secretion levels, such as Pseudomonas and Sphingomonas, was found closely related with the biofouling degree of RO membranes.


Assuntos
Incrustação Biológica , Purificação da Água , Bactérias , Biofilmes , Incrustação Biológica/prevenção & controle , Desinfecção , Matriz Extracelular de Substâncias Poliméricas , Membranas Artificiais , Osmose , Purificação da Água/métodos
3.
Chemosphere ; 292: 133471, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974050

RESUMO

Adsorption and coagulation were commonly used to alleviate reverse osmosis (RO) membrane fouling caused by dissolved organic matters (DOM), but the effects of changed composition and structure of DOM in dyeing wastewater after adsorption and coagulation on RO membrane fouling have seldom been studied. This study aimed at resolving the mechanism how the RO membrane fouling during dyeing wastewater treatment was alleviated by using adsorption and coagulation. The dyeing wastewater caused serious RO membrane fouling. Pretreatment with granular activated carbon (GAC), polyferric sulfate (PFS) and polyaluminum chloride (PACl) were conducted. It was shown that GAC could remove most of the DOM (95%) and preferred to adsorb protein, hydrophobic neutrals and fluorescent compounds. Both coagulants of PFS and PACl preferred to remove polysaccharides (the removal rate was 9-19% higher than that of DOM), high-MW compounds and these compounds with high fouling potential. Afterwards, the RO membrane fouling potential of the dyeing wastewater was tested. The GAC and PFS performed well to alleviate fouling. After GAC treatment, the decline rate of RO flux was similar to that of raw wastewater after 6-fold dilution. With pretreatment by PFS or PACl, the fouling potential of dyeing wastewater was much lower than that of raw wastewater after diluted to the same DOM content. Changes in polysaccharides content in the DOM had more effects on RO membrane fouling than that of proteins after these pretreatment. Although the DOM changed significantly after pretreatment, the fouling type was still intermediate blocking.


Assuntos
Águas Residuárias , Purificação da Água , Corantes , Filtração , Membranas Artificiais , Osmose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA