RESUMO
Hand, foot, and mouth disease (HFMD) is caused by more than 20 pathogenic enteroviruses belonging to the Picornaviridae family and Enterovirus genus. Since the introduction of the enterovirus-71 (EV71) vaccine in 2016, the number of HFMD cases caused by EV71 has decreased. However, cases of infections caused by other enteroviruses, such as coxsackievirus A6 (CA6) and coxsackievirus A10, have been increasing accordingly. In this study, we used a clinical isolate of CA6 to establish an intragastric infection mouse model using 7-day-old mice to mimic the natural transmission route, by which we investigated the differential gene expression profiles associated with virus infection and pathogenicity. After intragastric infection, mice exhibited hind limb paralysis symptoms and weight loss, similar to those reported for EV71 infection in mice. The skeletal muscle was identified as the main site of virus replication, with a peak viral load reaching 2.31 × 107 copies/mg at 5 dpi and increased infiltration of inflammatory cells. RNA sequencing analysis identified differentially expressed genes (DEGs) after CA6 infection. DEGs in the blood, muscle, brain, spleen, and thymus were predominantly enriched in immune system responses, including pathways such as Toll-like receptor signaling and PI3K-Akt signaling. Our study has unveiled the genes involved in the host immune response during CA6 infection, thereby enhancing our comprehension of the pathological mechanism of HFMD.IMPORTANCEThis study holds great significance for the field of hand, foot, and mouth disease (HFMD). It not only delves into the disease's etiology, transmission pathways, and severe complications but also establishes a novel mouse model that mimics the natural coxsackievirus A6 infection process, providing a pivotal platform to delve deeper into virus replication and pathogenic mechanisms. Additionally, utilizing RNA-seq technology, it unveils the dynamic gene expression changes during infection, offering valuable leads for identifying novel therapeutic drug targets. This research has the potential to enhance our understanding of HFMD, offering fresh perspectives for disease prevention and treatment and positively impacting children's health worldwide.
Assuntos
Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Criança , Humanos , Camundongos , Anticorpos Antivirais , Modelos Animais de Doenças , Enterovirus/patogenicidade , Enterovirus/fisiologia , Enterovirus Humano A , Infecções por Enterovirus/patologia , Infecções por Enterovirus/virologia , Expressão Gênica , Doença de Mão, Pé e Boca/genética , Fosfatidilinositol 3-Quinases , VirulênciaRESUMO
BACKGROUND: Prophylactic vaccines are critical in preventing hand, foot, and mouth disease (HFMD) primarily caused by human enterovirus 71 (EV71) infection. Children aged less than 5 years are especially susceptible to EV71 infections. In addition to the development of vaccines containing the inactivated virus, those containing virus-like particles (VLPs) with repeated antigens also constitute an effective preventive strategy for EV71 infections, with safety and productivity advantages. We previously developed a fusion protein composed with truncated peptides of the EV71 capsid protein, which assembled into spherical particles. This study aimed to assess the immunoprotective effects of this fusion protein as a vaccine candidate in a mouse model of EV71 infection. METHODS: To evaluate the protective effect of fusion protein vaccine candidate, neonatal mice born by immunized female mice, as well as normal neonatal mice immunized twice were infected with EV71 virus. Whereafter, the survival rates, clinical scores and viral loads were measured. RESULTS: The high dosage and booster immunization helped induce specific serum antibodies with high neutralization titers, which were transferred to neonatal mice, thereby facilitating effective resistance towards EV71 infection. An active immune response was also observed in neonatal mice which generated following immunization. CONCLUSIONS: The present results suggest that this fusion protein is a suitable vaccine candidate in treating EV71 infections.
Assuntos
Enterovirus Humano A/genética , Infecções por Enterovirus/prevenção & controle , Peptídeos/imunologia , Proteínas Virais de Fusão/imunologia , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linhagem Celular Tumoral , Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Feminino , Humanos , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/genética , Proteínas Virais de Fusão/administração & dosagem , Carga Viral , Vacinas Virais/genéticaRESUMO
Stereo-complexed poly(lactic acid) (SC-PLA) has unique stereo-complexed crystallites (SC) and homogeneous crystallites (HC), but the effect of this special crystalline property on the hydrolytic degradation of SC-PLA has not been researched. In this study, the hygrothermal aging behaviour of injection-molded SC-PLA and SC-PLA/microcrystalline cellulose (MCC) composites at different temperatures (25 °C and 60 °C) was investigated from micro- and macroscopic perspectives. The results demonstrated that the hydrolysis of SC-PLA was sequentially dominated by the amorphous region, the homogeneous crystalline region, the stereo-complexed crystalline region (three stages). The hydrolytic degradation of SC-PLA only completed the first stage after 4 weeks aging at 25 °C, while it was in the third stage after 4 weeks aging at 60 °C. On this basis, the accelerating effect of 10 wt% MCC on the hydrolysis process of SC-PLA at different stages was investigated. It was found that MCC shortened the hydrolysis time in the stereo-complexed crystalline region by reducing the rearrangement of amorphous structure to form SC and causing cracks and interfacial deterioration by water absorption-swelling-degradation. In addition, the thermal properties and impact strength of SC-PLA and SC-PLA/MCC composites decreased dramatically due to rapid hydrolytic degradation at 60 °C. Overall, the results of this study can provide theoretical basis for the application of SC-PLA and SC-PLA/MCC composites in hygrothermal environment.
Assuntos
Celulose , Poliésteres , Celulose/química , Hidrólise , Poliésteres/química , Temperatura , CristalizaçãoRESUMO
Hand, foot, and mouth disease (HFMD) is a contagious viral infection predominantly affecting infants and young children, caused by multiple enteroviruses, including Enterovirus 71 (EV71), Coxsackievirus A16 (CA16), Coxsackievirus A10 (CA10), and Coxsackievirus A6 (CA6). The high pathogenicity of HFMD has garnered significant attention. Currently, there is no specific treatment or broad-spectrum preventive measure available for HFMD, and existing monovalent vaccines have limited impact on the overall incidence or prevalence of the disease. Consequently, with the emergence of new viral strains driven by vaccine pressure, there is an urgent need to develop strategies for the rapid response and control of new outbreaks. In this study, we demonstrated the broad protective effect of maternal antibodies against three types of HFMD by immunizing mother mice with a trivalent inactivated vaccine targeting EV71, CA16, and CA10, using a neonatal mouse challenge model. Based on the feasibility of maternal antibodies as a form of passive immunization to prevent HFMD, we prepared a multivalent antiviral milk by immunizing dairy cows with the trivalent inactivated vaccine to target multiple HFMD viruses. In the neonatal mouse challenge model, this immunized milk exhibited extensive passive protection against oral infections caused by the three HFMD viruses. Compared to vaccines, this strategy may offer a rapid and broadly applicable approach to providing passive immunity for the prevention of HFMD, particularly in response to the swift emergence and spread of new variants.
RESUMO
Previous studies have shown the harmful effects of nanoscale particles on the intestinal tracts of organisms. However, the specific mechanisms remain unclear. Our present study focused on examining the uptake and distribution of polystyrene nanoplastics (PS-NPs) in zebrafish larvae, as well as its toxic effects on the intestine. It was found that PS-NPs, marked with red fluorescence, primarily accumulated in the intestine section. Subsequently, zebrafish larvae were exposed to normal PS-NPs (0.2-25 mg/L) over a critical 10-day period for intestinal development. Histopathological analysis demonstrated that PS-NPs caused structural changes in the intestine, resulting in inflammation and oxidative stress. Additionally, PS-NPs disrupted the composition of the intestinal microbiota, leading to alterations in the abundance of bacterial genera such as Pseudomonas and Aeromonas, which are associated with intestinal inflammation. Metabolomics analysis showed alterations in metabolites that are primarily involved in glycolipid metabolism. Furthermore, MetOrigin analysis showed a significant correlation between bacterial flora (Pedobacter and Bacillus) and metabolites (D-Glycerate 2-phosphate and D-Glyceraldehyde 3-phosphate), which are related to the glycolysis/gluconeogenesis pathways. These findings were further validated through alterations in multiple biomarkers at various levels. Collectively, our data suggest that PS-NPs may impair the intestinal health, disrupt the intestinal microbiota, and subsequently cause metabolic disorders.
Assuntos
Microbioma Gastrointestinal , Glicolipídeos , Larva , Poliestirenos , Peixe-Zebra , Animais , Poliestirenos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Glicolipídeos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Nanopartículas/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidadeRESUMO
BACKGROUND: Hand, foot and mouth disease (HFMD) is a common infectious disease caused by viral infection by a variety of enteroviruses, with coxsackievirus A 10 (CA10) having become more prevalent in recent years. METHODS: In this study, models of CA10 infection were established in 7-day-old Institute of Cancer Research (ICR) mice by intraperitoneal injection to analyze the pathogenicity of the virus. RNA sequencing analysis was used to screen the differentially expressed genes (DEGs) after CA10 infection. Coxsackievirus A 16 (CA16) and enterovirus 71 (EV71) infections were also compared with CA10. RESULTS: After CA10 virus infection, the mice showed paralysis of the hind limbs at 3 days post infection and weight loss at 5 days post infection. We observed viral replication in various tissues and severe inflammatory cell infiltration in skeletal muscle. The RNA-sequencing analysis showed that the DEGs in blood, muscle, thymus and spleen showed heterogeneity after CA10 infection and the most up-regulated DEGs in muscle were enriched in immune-related pathways. Compared with CA16 and EV71 infection, CA10 may have an inhibitory effect on T helper (Th) cell differentiation and cell growth. Additionally, the common DEGs in the three viruses were most enriched in the immune system response, including the Toll-like receptor pathway and the nucleotide-binding and oligomerization domain (NOD)-like pathway. CONCLUSIONS: Our findings revealed a group of genes that coordinate in response to CA10 infection, which increases our understanding of the pathological mechanism of HFMD.
RESUMO
In this study, the polylactic acid (PLA)/reversible thermochromic microcapsule (TCM) packaging application film was successfully synthesized by the blown film process. White mineral oil (WMO) was used as a dispersant to prepare PLA/TCM extruded materials with different mass fractions, in which the mass fraction of TCM was up to 20 wt% and the structural, thermal, mechanical, barrier, thermochromic, and heat storage-release properties were evaluated. It was found that WMO had a plasticizing effect, the elongation at break and water vapor transmission rate of the films with the addition of 7 wt% TCM were increased by 533 % and 31.38 %, respectively. For each thermochromic film, significant thermochromic and energy storage release phenomena were observed. For instance, 20 wt% TCM thermochromic film was most effective for prolonging the holding time and suspending the temperature drop rate. In general, thermochromic packaging films with optimized constitutes were successfully synthesized by the blown film process, which provides essential reference significance for the large-scale thermochromic film applications.
Assuntos
Embalagem de Alimentos , Vapor , Cápsulas , Óleo Mineral , Poliésteres/químicaRESUMO
Human enterovirus 71 (EV71) is the second most common cause of hand, foot, and mouth disease (HFMD), which can occur as a severe epidemic especially among children under 5-years old. New and improved treatment strategies to control EV71 infection are therefore urgently required. The heterocyclic compound GS-9620, a potent and selective agonist of Toll-like receptor 7 (TLR7), has been reported to activate plasmacytoid dendritic cells (pDCs), and suppress HBV as well as HIV replication. In this study, we indicated that GS-9620 also could inhibit EV71 replication in the mouse model of EV71 infection. With three-days treatment after EV71 infection, the levels of proinflammatory cytokines/chemokines, like IFN-α, IFN-γ and MCP-1, were sharply reduced in serum compared to those without treatment. Furthermore, GS-9620 activated TLR7 in the limb muscle cells, which stimulated the NF-κB and PI3K/AKT signaling pathways. When NF-κB or PI3K/AKT inhibitors were used, the antiviral effect of the GS-9620 was impacted. Overall, our data implied GS-9620 probably activates NF-κB and PI3K/AKT signaling pathways to clear the virus.