Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(44): 16079-16088, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37883745

RESUMO

The increasing pressure and unhealthy lifestyle are gradually eroding the physical and mental health of modern people. As a key hormone responsible for maintaining the normal functioning of human systems, cortisol plays a vital role in regulating physiological activities. Moreover, cortisol can serve as a marker for monitoring psychological stress. The development of cortisol detection sensors carries immense potential, as they not only facilitate timely adjustments and treatments by detecting abnormal physiological indicators but also provide comprehensive data for conducting research on the correlation between cortisol and several potential diseases. Here, we report a molecularly imprinted polymer (MIP) electrochemical biosensor that utilizes a porous composite (MXG) modified electrode. MXG composite is prepared by combining Ti3C2Tx-MXene sheets and graphene (Gr). MXG composite material with high conductive properties and large electroactive surface area promotes the charge transfer capability of the electrode surface, expands the effective surface area of the sensor, and increases the content of cortisol-imprinted cavities on the electrode, thereby improving the sensing ability of the sensor. By optimizing the preparation process, the prepared sensor has an ultralow lower limit of detection of 0.4 fM, a wide detection range of 1 fM-10 µM, and good specificity for steroid hormones and interfering substances with similar cortisol structure. The ability of the sensor to detect cortisol in saliva was also confirmed experimentally. This highly sensitive and selective cortisol sensor is expected to be widely used in the fields of physiological and psychological care.


Assuntos
Grafite , Impressão Molecular , Humanos , Polímeros/química , Hidrocortisona , Grafite/química , Técnicas Eletroquímicas , Limite de Detecção , Titânio , Eletrodos
2.
Langmuir ; 37(49): 14292-14301, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34846896

RESUMO

Polydimethylsiloxane (PDMS) is an important viscoelastic material that finds applications in a large number of engineering systems, particularly lab-on-chip microfluidic devices built with a flexible substrate. Channels made of PDMS, used for transporting analytes, are integral to these applications. The PDMS viscoelastic nature can induce additional hydrodynamic contributions at the soft wall/fluid interface compared to rigid walls. In this research, we investigated the pressure drop within PDMS channels bounded by rigid tubes (cellulose tubes). The bulging effect of the PDMS was limited by the rigid tubes under flowing fluids. The PDMS viscoelasticity was modulated by changing the ratio of the base to the cross-linker from 10:1 to 35:1. We observed that the pressure drop of the flowing fluids within the channel decreased with the increased loss tangent of the PDMS in the examined laminar regime [Reynolds number (Re) ∼ 23-58.6 for water and Re ∼ 0.69-8.69 for glycerol solution]. The elastic PDMS 10:1 wall channels followed the classical Hagen Poiseuille's equation, but the PDMS walls with lower cross-linker concentrations and thicker walls decreased pressure drops. The friction factor (f) for the PDMS channels with the two working fluids could be approximated as f = 47/Re. We provide a correlation between the pressure drop and PDMS viscoelasticity based on experimental findings. In the correlation, the loss tangent predominates; the larger the loss tangent, the smaller is the pressure drop. The research findings appear to be unexpected if only considering the energy dissipation of viscoelastic PDMS walls. We attributed the reduction in the pressure drop to a lubricating effect of the viscoelastic PDMS walls in the presence of the working fluids. Our results reveal the importance of the subtle diffusion of the residual oligomers and water from the bulk to the soft wall/fluid interface for the observed pressure drop in soft wall channels.


Assuntos
Dimetilpolisiloxanos , Dispositivos Lab-On-A-Chip , Transporte Biológico , Viscosidade
3.
Biomacromolecules ; 15(8): 3052-60, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-24983405

RESUMO

A weak polyelectrolyte, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), was grafted onto the surface of cellulose nanocrystals via free radical polymerization. The resultant suspension of PDMAEMA-grafted-cellulose nanocrystals (PDMAEMA-g-CNC) possessed pH-responsive properties. The grafting was confirmed by FTIR, potentiometric titration, elementary analysis, and thermogravimetric analysis (TGA); the surface and interfacial properties of the modified particles were characterized by surface tensiometer. Compared to pristine cellulose nanocrystals, modified CNC significantly reduced the surface and interfacial tensions. Stable heptane-in-water and toluene-in-water emulsions were prepared with PDMAEMA-g-CNC. Various factors, such as polarity of solvents, concentration of particles, electrolytes, and pH, on the properties of the emulsions were investigated. Using Nile Red as a florescence probe, the stability of the emulsions as a function of pH and temperature was elucidated. It was deduced that PDMAEMA chains promoted the stability of emulsion droplets and their chain conformation varied with pH and temperature to trigger the emulsification and demulsification of oil droplets. Interestingly, for heptane system, the macroscopic colors varied depending on the pH condition, while the color of the toluene system remained the same. Reversible emulsion systems that responded to pH were observed and a thermoresponsive Pickering emulsion system was demonstrated.


Assuntos
Celulose/química , Metacrilatos/química , Nanopartículas/química , Nylons/química , Polímeros/química , Eletrólitos/química , Emulsões , Concentração de Íons de Hidrogênio , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química
4.
Macromol Rapid Commun ; 35(3): 350-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24338801

RESUMO

We report the functionalization of polypyrrole (PPy) with a "sticky" biomolecule dopamine (DA), which mimics the essential component of mussel adhesive protein. PPy is one of the most promising electrically conductive polymers with good biocompatibility. The research findings reveal that the DA functionalization enhances the dispersibility and stability of PPy in water and its film adhesion to substrate surface significantly. The electrical conductivity of PPy increases to a maximum value and then decreases with the increasing DA concentration. An optimal DA to pyrrole (Py) mole ratio is found to be between 0.1 and 0.2, at which both conductivity and adhesion of DA-functionalized PPy has been improved.


Assuntos
Dopamina/química , Polímeros/química , Pirróis/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Adesão Celular , Condutividade Elétrica
5.
Biomacromolecules ; 14(2): 394-405, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23311532

RESUMO

Dopamine is a "sticky" biomolecule containing the typical functional groups of mussel adhesive proteins. It can self-polymerize into a nanoscale thin film on various surfaces. We investigated the surface, adhesion, friction, and cracking properties of polydopamine (PDA) thin films for their effective transfer to functional devices and biocompatible coatings. A series of surface characterizations and mechanical tests were performed to reveal the static and dynamic properties of PDA films coated on glass, polydimethylsiloxane (PDMS), and epoxy. We found that PDA films are highly hydrated under wet conditions because of their porous membrane-like nanostructures and hydrophilic functional groups. Upon dehydration, the films form cracks when they are coated on soft substrates due to internal stresses and the large mismatch in elastic modulus. The adhesive pull-off force or the effective work of adhesion increased with the contact time, suggesting dynamic interactions at the interface. A significant decrease in friction forces in water was observed on all three material surfaces coated with PDA; thus, the film might serve as a water-based lubrication coating. We attributed the different behavior of PDA films in air and in water to its hydration effects. These research findings provide insight into the stability, mechanical, and adhesive properties of the PDA films, which are critical for their applications.


Assuntos
Adesivos/química , Indóis/química , Polímeros/química , Proteínas/química , Dimetilpolisiloxanos/química , Compostos de Epóxi/química , Vidro/química , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas , Propriedades de Superfície , Água/química
6.
Langmuir ; 28(25): 9562-72, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22616836

RESUMO

We investigated the contact behaviors of a nanoscopic stiff thin film bonded to a compliant substrate and derived an analytical solution for determining the elastic modulus of thin films. Microscopic contact deformations of the gold and polydopamine thin films (<200 nm) coated on polydimethylsiloxane elastomers were measured by indenting a soft tip and analyzed in the framework of the classical plate theory and Johnson-Kendall-Roberts (JKR) contact mechanics. The analysis of this thin film contact mechanics focused on the bending and stretching resistance of thin films and is fundamentally different from conventional indentation measurements where the focus is on the fracture and compression of the films. The analytical solution of the elastic modulus of nanoscopic thin films was validated experimentally using 50 and 100 nm gold thin films coated on polydimethylsiloxane elastomers. The technical application of this analysis was further demonstrated by measuring the elastic modulus of thin films of polydopamine, a recently discovered biomimetic universal coating material. Furthermore, the method presented here is able to quantify the contact behaviors of nanoscopic thin films, effectively providing fundamental design parameters, the elastic modulus, and the work of adhesion, crucial for transferring them effectively into practical applications.


Assuntos
Fenômenos Mecânicos , Nanotecnologia/métodos , Dimetilpolisiloxanos/química , Módulo de Elasticidade , Ouro/química , Indóis/química , Teste de Materiais , Modelos Teóricos , Polímeros/química , Propriedades de Superfície
7.
Environ Pollut ; 315: 120334, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36216183

RESUMO

The resilience and low cost of plastics has made their usage ubiquitous, but is also the cause of their prevalence and longevity as waste. Plastic pollution has become a great concern to the health and wellbeing of ecosystems around the world; microplastics are a particular threat, due to their high mobility, ease of ingestion by wildlife, and ability to adsorb and carry toxic contaminants. Material flow analysis has been widely applied to examine stocks and flows of materials in other industries, and has more recently been applied to plastics to examine areas where waste can reach the environment. However, while much research has gone into the environmental fate of microplastics, degradation strategies have been a lesser focus, and material flow analysis of microplastics has suffered from lack of data. Furthermore, the variety of plastics, their additives, and any contaminants pose a significant challenge in degrading (and not merely fragmenting) microplastic particles. This review discusses the current degradation strategies and solutions for dealing with existing and newly-generated microplastic waste along with examining the status of microplastics-based material flow analysis, which are critical for evaluating the possibility of incorporating microplastic waste into a circular economy. The degradation strategies are critically examined, identifying challenges and current trends, as well as important considerations that are frequently under-reported. An emphasis is placed on identifying missing data or information in both material flow analysis and degradation methods that could prove crucial in improving understanding of microplastic flows, as well as optimizing degradation strategies and minimizing any negative environmental impact.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Ecossistema , Poluentes Químicos da Água/análise , Poluição Ambiental , Monitoramento Ambiental
8.
Adv Mater ; 27(43): 6828-33, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26418411

RESUMO

Muscle-driven actuation of biomimetic microfibrillar structures is achieved using integrative soft-lithography on a backing splayed liquid-crystal elastomer (LCE). Variation in the backing LCE layer thickness yields different modes of thermal deformation from a pure bend to a twist-bend. Muscular motion and dynamic self-cleaning of gecko toe pads are mimicked via this mechanism.


Assuntos
Materiais Biomiméticos/química , Elastômeros , Cristais Líquidos/química , Músculos/fisiologia , Répteis , Animais , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA