Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Res Int ; 2021: 8859945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34036104

RESUMO

PURPOSE: The stress shielding effect caused due to the mechanical mismatch between the solid titanium and the surrounding bone tissue warrants the utilization of a mechanically and biologically compatible material such as the titanium-hydroxyapatite (Ti-HA) functionally graded material (FGM) for dental implants. This study is aimed at fabricating a Ti-HA FGM with superior mechanical and biological properties for dental implantation. MATERIALS AND METHODS: We fabricated a Ti-HA FGM with different Ti volume fractions (VFs) using HA and Ti powders. Ti-HA was characterized by studying its mechanical properties. Cytotoxicity was examined using a Cell Counting Kit-8 assay and an LDH cell cytotoxicity assay. Scanning electron microscopy was performed on an XL30 environmental scanning electron microscope (ESEM). Alkaline phosphatase (ALP) and transforming growth factor (TGF-ß1) expressions were quantitatively monitored using enzyme-linked immunosorbent assay (ELISA) kits. The expressions of TGF-ß receptors and ALP genes were measured using real-time polymerase chain reaction. The Ti-HA FGM dental implants were placed in beagle dogs. Microcomputed tomography (CT) and hard tissue slices were performed to evaluate the bone-implant contact (BIC) and bone volume over total volume (BV/TV). RESULTS: The density and mechanical properties of the Ti-HA exhibited various graded distributions corresponding to VF. Based on the results of the Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays, the difference in cytotoxicity between the two groups was statistically nonsignificant (P = 0.11). The ALP and TGF-ß1 levels were slightly upregulated. The transcript levels of ALP and TGF-ßRI were higher in the Ti-HA groups than in the Ti group at 7 days, whereas the transcript levels of TGF-ßRII exhibited no obvious increase. The BIC did not exhibit significant differences between the Ti and Ti-HA FGM groups (P = 0.0504). BV/TV showed the Ti-HA FGM group had better osteogenesis (P = 0.04). CONCLUSION: Ti-HA FGM contributes to the osteogenesis of dental implants in vivo and in vitro.


Assuntos
Implantes Dentários , Durapatita/química , Titânio/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Cães , Durapatita/farmacologia , Teste de Materiais , Microscopia Eletrônica de Varredura , Modelos Animais , Osseointegração , Osteogênese , Propriedades de Superfície , Titânio/farmacologia , Microtomografia por Raio-X
2.
Acta Biomater ; 87: 285-295, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30682423

RESUMO

Total joint replacement is currently the most successful clinical treatment for improving the life quality of individuals afflicted with end-stage osteoarthritis of knee or hip joints. However, release of wear and corrosion products from the prostheses is a critical issue causing adverse physiological responses of local issues. ß-SiC nanoparticles were dispersed into polyetheretherketone (PEEK) materials and their role in tribocorrosion performance of PEEK-steel joints exposed to simulated body fluid was investigated. It is demonstrated that ß-SiC nanoparticles increase greatly the wear resistance of the PEEK materials, and meanwhile mitigate significantly corrosion of the steel counterpart. It is revealed that tribochemical reactions of ß-SiC nanoparticles promoted formation of a robust tribofilm having complex structures providing protection and shielding effects. The present work proposes a strategy for developing high-performance polymer-on-metal joint replacement materials of enhanced lifespan and biocompatibility via tuning interface nanostructures. STATEMENT OF SIGNIFICANCE: Adverse tissue responses to metal wear and corrosion products from metal base implants remain a challenge to surgeons and patients. We demonstrated that leaching of metal ions and release of metallic debris are well decreased via tuning interface nanostructures of metal-polymer joint bearings by dispersing ß-SiC nanoparticles into polyetheretherketone (PEEK). It is identified that the addition of ß-SiC greatly improves the tribological performances of the PEEK materials and mitigated corrosion of the steel. Tribo-chemistry reactions of SiC induce the formation of complex structures which provide protection and shielding effects. Nanostructures of the tribofilm were also comprehensively investigated. These novel findings proposed a potential route for designing high performance metal-polymer joint replacement materials.


Assuntos
Prótese de Quadril , Cetonas/química , Metais/química , Nanopartículas/química , Polietilenoglicóis/química , Artroplastia de Quadril , Benzofenonas , Corrosão , Humanos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA