Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 347: 119158, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804638

RESUMO

Microplastics (MPs) have already spread across the globe and have been found in drinking water and human tissues. This may pose severe threats to human health and water environment. Therefore, this study accurately evaluated the removal effect of metal-modified biochar on polystyrene microplastics (PS-MPs) (1.0 µm) in the water environment using a high-throughput fluorescence quantification method. The results indicated that Fe-modified biochar (FeBC) and Fe/Zn-modified biochar (Fe/ZnBC) had good removal efficiencies for PS-MPs under the dosage of 3 g/L, which were 96.24% and 84.77%, respectively. Although pore effects were observed (such as "stuck", "trapped"), the electrostatic interaction was considered the main mechanism for the adsorption of PS-MPs on metal-modified biochar, whereas the formation of metal-O-PS-MPs may also contribute to the adsorption process. The removal efficiency of PS-MPs by FeBC was significantly reduced under alkaline conditions (pH = 9 and 11) or in the presence of weak acid ions (PO43-, CO32-, HCO3-). A removal efficiency of 72.39% and 78.33% of PS-MPs was achieved from tap water (TW) and lake water (LW) using FeBC when the initial concentration was 20 mg/L. However, FeBC had no removal effect on PS-MPs in biogas slurry (BS) and brewing wastewater (BW) due to the direct competitive adsorption of high concentrations of chemical oxygen demand (COD). The findings of this study highlighted that metal-modified biochar had a potential application in purifying tap water or lake water which contaminated by MPs.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Água , Adsorção , Metais
2.
Huan Jing Ke Xue ; 44(8): 4728-4741, 2023 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-37694665

RESUMO

The extensive application of plastic products leads to the increasingly significant harm of plastic wastes to the ecological environment, which is also a focus of global environmental issues. Due to the lack of a sound plastic waste management system, most plastic waste is still treated by the traditional mode or remains in the environment, with low recycling efficiency, and the plastic life cycle has not yet formed. Plastics in the environment will age and degrade under the actions of physical (wear, waves), chemical (ultraviolet radiation, hydrolysis), and biological (fungi, bacteria) factors for a long time and generate micro (nano) plastics. Due to their small particle size, large specific surface area, and charged characteristics, in addition to their own toxicity, they can also be used as carriers or covert carriers of pollutants (heavy metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, bacteria, etc.) to migrate in the environment through runoff, sewage discharge, and hydrometeorology, causing ecological environmental pollution. MPs pollution has been listed as the second largest scientific problem in the field of environmental and ecological science by the United Nations Environment Programme. MPs are widely distributed, and there are different degrees of MPs pollution in the global water (freshwater, ocean), soil, and atmospheric environment. Traces of MPs have also been found in human placentas, human breastmilk, living lungs, and blood in recent years. Therefore, the formation mechanisms of MPs under the actions of physics, chemistry, and microorganisms, as well as their abundance levels and migration characteristics in water, soil, and atmosphere environment were comprehensively reviewed, with the hope of providing reference for monitoring the pollution levels of MPs in the environment, exploring their transport laws in the environment, proposing the management strategy of MPs pollution, and revealing the degradation mechanisms of MPs under different effects.


Assuntos
Microplásticos , Plásticos , Humanos , Feminino , Gravidez , Raios Ultravioleta , Atmosfera , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA