RESUMO
A Gram-positive, cellulose-degrading actinobacterium, designed strain NEAU-YM18T, was isolated from rhizosphere soil of wheat (Triticum aestivum L.) sampled in Langfang, Hebei Province, PR China. The novel strain was characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics confirmed that strain NEAU-YM18T belonged to the genus Catellatospora. Cells of strain NEAU-YM18T were observed to contain meso- and 3-hydroxy-diaminopimelic acids as diagnostic cell-wall amino acids. The acyl type of the cell-wall muramic acid was glycolyl. The whole-cell hydrolysates were xylose, glucose and ribose. The phospholipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C15â:â0, iso-C16â:â0, C18â:â1 ω9c and summed feature 5 (anteiso-C18â:â0/C18â:â2 ω6,9c). The menaquinones were MK-9(H4), MK-9(H6) and MK-9(H2). The DNA G+C content was 71.1â%. The results of 16S rRNA gene sequence and phylogenetic analyses indicated that strain NEAU-YM18T was closely related to Catellatospora chokoriensis 2-25(1)T (98.4â% 16S rRNA gene sequence similarity), Catellatospora vulcania NEAU-JM1T (98.3%) and Catellatospora sichuanensis H14505T (98.3â%) and formed a branch with C. sichuanensis H14505T. Furthermore, the whole genome phylogeny of strain NEAU-YM18T showed that the strain formed an independent clade. The digital DNA-DNA hybridization results between NEAU-YM18T and C. chokoriensis 2-25(1)T, C. vulcania NEAU-JM1T and C. sichuanensis H14505T were 25.0, 24.7 and 24.7â%, respectively, and the whole-genome average nucleotide identity values between them were 81.5, 81.4 and 81.4â%, respectively. These genetic results and some phenotypic characteristics could distinguish strain NEAU-YM18T from its reference strains. In addition, genomic analysis confirmed that strain NEAU-YM18T had the potential to decompose cellulose and produce bioactive compounds. Therefore, strain NEAU-YM18T represents a novel species of the genus Catellatospora, for which the name Catellatospora tritici sp. nov. is proposed. The type strain is NEAU-YM18T (=CCTCC AA 2020040T=JCM 33977T).
Assuntos
Actinobacteria , Celulase , Técnicas de Tipagem Bacteriana , Composição de Bases , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Triticum/microbiologiaRESUMO
Bacterial biofilms can be programmed to produce living materials with self-healing and evolvable functionalities. However, the wider use of artificial biofilms has been hindered by limitations on processability and functional protein secretion capacity. We describe a highly flexible and tunable living functional materials platform based on the TasA amyloid machinery of the bacterium Bacillus subtilis. We demonstrate that genetically programmable TasA fusion proteins harboring diverse functional proteins or domains can be secreted and can assemble into diverse extracellular nano-architectures with tunable physicochemical properties. Our engineered biofilms have the viscoelastic behaviors of hydrogels and can be precisely fabricated into microstructures having a diversity of three-dimensional (3D) shapes using 3D printing and microencapsulation techniques. Notably, these long-lasting and environmentally responsive fabricated living materials remain alive, self-regenerative, and functional. This new tunable platform offers previously unattainable properties for a variety of living functional materials having potential applications in biomaterials, biotechnology, and biomedicine.
Assuntos
Bacillus subtilis/fisiologia , Materiais Biocompatíveis/química , Biofilmes , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Materiais Biocompatíveis/metabolismo , Biodegradação Ambiental , Composição de Medicamentos , Elasticidade , Engenharia Genética/métodos , Nanopartículas/química , Paraoxon/metabolismo , Impressão Tridimensional , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Polystyrene microplastics (PS-MPs) can threaten human health, especially male fertility. However, most existing studies have focused on the adulthood stage of male reproduction toxicity caused by relatively short-term PS-MP exposure. This study aimed to investigate the toxic effect of PS-MPs on testicular development and reproductive function upon prenatal and postnatal exposure. Pregnant mice and their offspring were exposed to 0, 0.5 mg/L, 5 mg/L, and 50 mg/L PS-MPs through their daily drinking water from gestational day 1 to postnatal day (PND) 35 or PND70. We found that PS-MP exposure induced testis development disorder by PND35 and spermatogenesis dysfunction by PND70. By combining RNA sequencing results and bioinformatics analysis, the hormone-mediated signaling pathway, G1/S transition of the mitotic cell cycle, coregulation of androgen receptor activity, and Hippo signaling pathway were shown to be involved in testis development on PND35. The meiotic cell cycle, regulation of the immune effector process, neutrophil degranulation, and inflammation mediated by chemokine and cytokine signaling pathways were associated with disturbed spermatogenesis on PND70. These findings show that prenatal and postnatal exposure to PS-MPs resulted in testis development disorder and male subfertility, which may be regulated by the Hippo signaling pathway and involve an immune reaction.
Assuntos
Poliestirenos , Doenças Testiculares , Gravidez , Feminino , Humanos , Criança , Camundongos , Masculino , Animais , Adulto , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos , Deficiências do Desenvolvimento , FertilidadeRESUMO
Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.