Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35181608

RESUMO

Dynamic biomaterials excel at recapitulating the reversible interlocking and remoldable structure of the extracellular matrix (ECM), particularly in manipulating cell behaviors and adapting to tissue morphogenesis. While strategies based on dynamic chemistries have been extensively studied for ECM-mimicking dynamic biomaterials, biocompatible molecular means with biogenicity are still rare. Here, we report a nature-derived strategy for fabrication of dynamic biointerface as well as a three-dimensional (3D) hydrogel structure based on reversible receptor-ligand interaction between the glycopeptide antibiotic vancomycin and dipeptide d-Ala-d-Ala. We demonstrate the reversible regulation of multiple cell types with the dynamic biointerface and successfully implement the dynamic hydrogel as a functional antibacterial 3D scaffold to treat tissue repair. In view of the biogenicity and high applicability, this nature-derived reversible molecular strategy will bring opportunities for malleable biomaterial design with great potential in biomedicine.


Assuntos
Matriz Extracelular/química , Matriz Extracelular/fisiologia , Engenharia de Proteínas/métodos , Alanina/química , Alanina/metabolismo , Materiais Biocompatíveis/química , Biomimética/métodos , Dipeptídeos/metabolismo , Humanos , Hidrogéis/química , Ligantes , Vancomicina/química , Vancomicina/metabolismo
2.
Chem Soc Rev ; 53(8): 4086-4153, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38465517

RESUMO

Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.


Assuntos
Materiais Biocompatíveis , Elastômeros , Medicina Regenerativa , Engenharia Tecidual , Humanos , Elastômeros/química , Materiais Biocompatíveis/química , Animais
3.
Mol Pharm ; 21(5): 2238-2249, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38622497

RESUMO

Tuberculosis (TB) is a chronic disease caused byMycobacterium tuberculosis (Mtb), which shows a long treatment cycle often leads to drug resistance, making treatment more difficult. Immunogens present in the pathogen's cell membrane can stimulate endogenous immune responses. Therefore, an effective lipid-based vaccine or drug delivery vehicle formulated from the pathogen's cell membrane can improve treatment outcomes. Herein, we extracted and characterized lipids fromMycobacterium smegmatis, and the extracts contained lipids belonging to numerous lipid classes and compounds typically found associated with mycobacteria. The extracted lipids were used to formulate biomimetic lipid reconstituted nanoparticles (LrNs) and LrNs-coated poly(lactic-co-glycolic acid) nanoparticles (PLGA-LrNs). Physiochemical characterization and results of morphology suggested that PLGA-LrNs exhibited enhanced stability compared with LrNs. And both of these two types of nanoparticles inhibited the growth of M. smegmatis. After loading different drugs, PLGA-LrNs containing berberine or coptisine strongly and synergistically prevented the growth of M. smegmatis. Altogether, the bacterial membrane lipids we extracted with antibacterial activity can be used as nanocarrier coating for synergistic antibacterial treatment of M. smegmatis─an alternative model of Mtb, which is expected as a novel therapeutic system for TB treatment.


Assuntos
Mycobacterium smegmatis , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Mycobacterium smegmatis/efeitos dos fármacos , Lipídeos/química , Sinergismo Farmacológico , Membrana Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/administração & dosagem , Mycobacterium/efeitos dos fármacos , Berberina/farmacologia , Berberina/química , Portadores de Fármacos/química , Tuberculose/tratamento farmacológico
4.
Environ Res ; 251(Pt 2): 118677, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508358

RESUMO

Recent studies demonstrated that plastic degradation in Zophobas atratus superworms is related to the gut microbiota. To determine whether the biodegradation and gut-microbiota were influenced by ingested plastic polymerization types, foams of polypropylene (PP), polyurethane (PU) and ethylene vinyl acetate (EVA) were selected as representatives of polyolefins, polyester and copolymers, and the sole feedstock for superworms for 45 d. Both growth and survival rates of superworms were influenced by the type of plastic diet. Although the total consumptions of EVA- and PP-fed groups were similar at 29.03 ± 0.93 and 28.89 ± 1.14 mg/g-larva, which were both significantly higher than that of PU-fed groups (21.63 ± 2.18 mg/g-larva), the final survival rates of the EVA-fed group of 36.67 ± 10.41% exhibited significantly lower than that of the PP- and PU-fed groups of 76.67 ± 2.89% and 75.00 ± 7.07%, respectively, and even the starvation group of 51.67 ± 10.93%. The Illumina MiSeq results revealed similarities in the dominant gut bacterial communities between PU- and EVA-fed groups, with an increase in relative abundance of Lactococcus, but significant differences from the PP-fed groups, which had two predominant genera of unclassified Enterobacteriaceae and Enterococcus. Compared to bran-fed groups, changes in gut fungal communities were similar across all plastics-fed groups, with an increase in the dominant abundance of Rhodotorula. The abundance of Rhodotorula increased in the order of polyolefin, polyester, and copolymer. In summary, plastic ingestion, larval growth, and changes in gut bacterial and fungal community of superworms were all influenced by foam diets of different polymerization types, and especially influences on the gut microbiomes were different from each other.


Assuntos
Biodegradação Ambiental , Microbioma Gastrointestinal , Larva , Plásticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Larva/microbiologia , Bactérias/metabolismo , Bactérias/classificação , Polimerização , Fungos/metabolismo , Micobioma
5.
Plant Cell Rep ; 43(3): 65, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341396

RESUMO

Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.


Assuntos
Metais Pesados , Microplásticos , Humanos , Microplásticos/toxicidade , Solo/química , Plásticos , Ecossistema , Metais Pesados/toxicidade , Produtos Agrícolas
6.
Microb Cell Fact ; 22(1): 162, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635215

RESUMO

BACKGROUND: Poly-ß-hydroxybutyrate (PHB), produced by a variety of microbial organisms, is a good substitute for petrochemically derived plastics due to its excellent properties such as biocompatibility and biodegradability. The high cost of PHB production is a huge barrier for application and popularization of such bioplastics. Thus, the reduction of the cost is of great interest. Using low-cost substrates for PHB production is an efficient and feasible means to reduce manufacturing costs, and the construction of microbial cell factories is also a potential way to reduce the cost. RESULTS: In this study, an engineered Sphingomonas sanxanigenens strain to produce PHB by blocking the biosynthetic pathway of exopolysaccharide was constructed, and the resulting strain was named NXdE. NXdE could produce 9.24 ± 0.11 g/L PHB with a content of 84.0% cell dry weight (CDW) using glucose as a sole carbon source, which was significantly increased by 76.3% compared with the original strain NX02. Subsequently, the PHB yield of NXdE under the co-substrate with different proportions of glucose and xylose was also investigated, and results showed that the addition of xylose would reduce the PHB production. Hence, the Dahms pathway, which directly converted D-xylose into pyruvate in four sequential enzymatic steps, was enhanced by overexpressing the genes xylB, xylC, and kdpgA encoding xylose dehydrogenase, gluconolactonase, and aldolase in different combinations. The final strain NX02 (ΔssB, pBTxylBxylCkdpgA) (named NXdE II) could successfully co-utilize glucose and xylose from corn straw total hydrolysate (CSTH) to produce 21.49 ± 0.67 g/L PHB with a content of 91.2% CDW, representing a 4.10-fold increase compared to the original strain NX02. CONCLUSION: The engineered strain NXdE II could co-utilize glucose and xylose from corn straw hydrolysate, and had a significant increase not only in cell growth but also in PHB yield and content. This work provided a new host strain and strategy for utilization of lignocellulosic biomass such as corn straw to produce intracellular products like PHB.


Assuntos
Glucose , Xilose , Poliésteres , Hidroxibutiratos
7.
Proc Natl Acad Sci U S A ; 117(31): 18711-18718, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690697

RESUMO

KREMEN1 (KRM1) has been identified as a functional receptor for Coxsackievirus A10 (CV-A10), a causative agent of hand-foot-and-mouth disease (HFMD), which poses a great threat to infants globally. However, the underlying mechanisms for the viral entry process are not well understood. Here we determined the atomic structures of different forms of CV-A10 viral particles and its complex with KRM1 in both neutral and acidic conditions. These structures reveal that KRM1 selectively binds to the mature viral particle above the canyon of the viral protein 1 (VP1) subunit and contacts across two adjacent asymmetry units. The key residues for receptor binding are conserved among most KRM1-dependent enteroviruses, suggesting a uniform mechanism for receptor binding. Moreover, the binding of KRM1 induces the release of pocket factor, a process accelerated under acidic conditions. Further biochemical studies confirmed that receptor binding at acidic pH enabled CV-A10 virion uncoating in vitro. Taken together, these findings provide high-resolution snapshots of CV-A10 entry and identify KRM1 as a two-in-one receptor for enterovirus infection.


Assuntos
Proteínas do Capsídeo , Enterovirus Humano A , Proteínas de Membrana , Internalização do Vírus , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Enterovirus Humano A/química , Enterovirus Humano A/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Vírion/química , Vírion/metabolismo , Desenvelopamento do Vírus
8.
Proc Natl Acad Sci U S A ; 117(28): 16127-16137, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601214

RESUMO

Thrombogenic reaction, aggressive smooth muscle cell (SMC) proliferation, and sluggish endothelial cell (EC) migration onto bioinert metal vascular stents make poststenting reendothelialization a dilemma. Here, we report an easy to perform, biomimetic surface engineering strategy for multiple functionalization of metal vascular stents. We first design and graft a clickable mussel-inspired peptide onto the stent surface via mussel-inspired adhesion. Then, two vasoactive moieties [i.e., the nitric-oxide (NO)-generating organoselenium (SeCA) and the endothelial progenitor cell (EPC)-targeting peptide (TPS)] are clicked onto the grafted surfaces via bioorthogonal conjugation. We optimize the blood and vascular cell compatibilities of the grafted surfaces through changing the SeCA/TPS feeding ratios. At the optimal ratio of 2:2, the surface-engineered stents demonstrate superior inhibition of thrombosis and SMC migration and proliferation, promotion of EPC recruitment, adhesion, and proliferation, as well as prevention of in-stent restenosis (ISR). Overall, our biomimetic surface engineering strategy represents a promising solution to address clinical complications of cardiovascular stents and other blood-contacting metal materials.


Assuntos
Adesivos/química , Materiais Revestidos Biocompatíveis/química , Peptídeos/química , Stents , Adesivos/síntese química , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Química Click , Células Progenitoras Endoteliais/citologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Humanos , Miócitos de Músculo Liso/citologia , Óxido Nítrico/química , Compostos Organosselênicos/química , Peptídeos/síntese química , Proteínas/química , Coelhos , Stents/efeitos adversos , Trombose/etiologia , Trombose/prevenção & controle
9.
Ecotoxicol Environ Saf ; 268: 115707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988994

RESUMO

Microplastics and antibiotics are emerging as ubiquitous contaminants in farmland soil, harming crop quality and yield, and thus threatening global food security and human health. However, few studies have examined the individual and joint effects of degradable and/or non-degradable microplastics and antibiotics on crop plants. This study examined the individual and joint effects of polyethylene (PE) and polylactic acid (PLA) microplastics and the antibiotic oxytetracycline (OTC) on pak choi by measuring its growth, photosynthesis, antioxidant enzyme activity, and metabolite levels. Microplastics and/or oxytetracycline adversely affected root weight, photosynthesis, and antioxidant enzyme (superoxide dismutase, catalase, and ascorbate peroxidase) activities. The levels of leaf metabolites were significantly altered, causing physiological changes. Biosynthesis of plant secondary metabolites and amino acids was altered, and plant hormones pathways were disrupted. Separately and together, OTC, PE, and PLA exerted phytotoxic and antagonistic effects on pak choi. Separately and together with OTC, degradable microplastics altered the soil properties, thus causing more severe impacts on plant performance than non-degradable microplastics. This study elucidates the effects on crop plants of toxicity caused by co-exposure to degradable or non-degradable microplastic and antibiotics contamination and suggests mechanisms.


Assuntos
Antioxidantes , Oxitetraciclina , Humanos , Microplásticos , Plásticos , Oxitetraciclina/toxicidade , Solo , Plantas , Antibacterianos/toxicidade , Poliésteres
10.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240316

RESUMO

As the main component of plant cell walls, lignin can not only provide mechanical strength and physical defense for plants, but can also be an important indicator affecting the properties and quality of wood and bamboo. Dendrocalamus farinosus is an important economic bamboo species for both shoots and timber in southwest China, with the advantages of fast growth, high yield and slender fiber. Caffeoyl-coenzyme A-O-methyltransferase (CCoAOMT) is a key rate-limiting enzyme in the lignin biosynthesis pathway, but little is known about it in D. farinosus. Here, a total of 17 DfCCoAOMT genes were identified based on the D. farinosus whole genome. DfCCoAOMT1/14/15/16 were homologs of AtCCoAOMT1. DfCCoAOMT6/9/14/15/16 were highly expressed in stems of D. farinosus; this is consistent with the trend of lignin accumulation during bamboo shoot elongation, especially DfCCoAOMT14. The analysis of promoter cis-acting elements suggested that DfCCoAOMTs might be important for photosynthesis, ABA/MeJA responses, drought stress and lignin synthesis. We then confirmed that the expression levels of DfCCoAOMT2/5/6/8/9/14/15 were regulated by ABA/MeJA signaling. In addition, overexpression of DfCCoAOMT14 in transgenic plants significantly increased the lignin content, xylem thickness and drought resistance of plants. Our findings revealed that DfCCoAOMT14 can be a candidate gene that is involved in the drought response and lignin synthesis pathway in plants, which could contribute to the genetic improvement of many important traits in D. farinosus and other species.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lignina , Metiltransferases , Plantas Geneticamente Modificadas , Poaceae , Poaceae/genética , Metiltransferases/genética , Lignina/biossíntese , Lignina/genética , Plantas Geneticamente Modificadas/genética , Resistência à Seca/genética , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica de Plantas/genética
11.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838615

RESUMO

Flexible sensors are the essential foundations of pressure sensing, microcomputer sensing systems, and wearable devices. The flexible tactile sensor can sense stimuli by converting external forces into electrical signals. The electrical signals are transmitted to a computer processing system for analysis, realizing real-time health monitoring and human motion detection. According to the working mechanism, tactile sensors are mainly divided into four types-piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. Conventional silicon-based tactile sensors are often inadequate for flexible electronics due to their limited mechanical flexibility. In comparison, polymeric nanocomposites are flexible and stretchable, which makes them excellent candidates for flexible and wearable tactile sensors. Among the promising polymers, conjugated polymers (CPs), due to their unique chemical structures and electronic properties that contribute to their high electrical and mechanical conductivity, show great potential for flexible sensors and wearable devices. In this paper, we first introduce the parameters of pressure sensors. Then, we describe the operating principles of resistive, capacitive, piezoelectric, and triboelectric sensors, and review the pressure sensors based on conjugated polymer nanocomposites that were reported in recent years. After that, we introduce the performance characteristics of flexible sensors, regarding their applications in healthcare, human motion monitoring, electronic skin, wearable devices, and artificial intelligence. In addition, we summarize and compare the performances of conjugated polymer nanocomposite-based pressure sensors that were reported in recent years. Finally, we summarize the challenges and future directions of conjugated polymer nanocomposite-based sensors.


Assuntos
Nanocompostos , Dispositivos Eletrônicos Vestíveis , Humanos , Polímeros , Inteligência Artificial , Nanocompostos/química , Tato
12.
J Integr Plant Biol ; 65(5): 1134-1146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36647609

RESUMO

Lignin is a major component of plant cell walls and is essential for plant growth and development. Lignin biosynthesis is controlled by a hierarchical regulatory network involving multiple transcription factors. In this study, we showed that the gene encoding an APETALA 2/ethylene-responsive element binding factor (AP2/ERF) transcription factor, PagERF81, from poplar 84 K (Populus alba × P. glandulosa) is highly expressed in expanding secondary xylem cells. Two independent homozygous Pagerf81 mutant lines created by gene editing, produced significantly more but smaller vessel cells and longer fiber cells with more lignin in cell walls, while PagERF81 overexpression lines had less lignin, compared to non-transgenic controls. Transcriptome and reverse transcription quantitative PCR data revealed that multiple lignin biosynthesis genes including Cinnamoyl CoA reductase 1 (PagCCR1), Cinnamyl alcohol dehydrogenase 6 (PagCAD6), and 4-Coumarate-CoA ligase-like 9 (Pag4CLL9) were up-regulated in Pagerf81 mutants, but down-regulated in PagERF81 overexpression lines. In addition, a transient transactivation assay revealed that PagERF81 repressed the transcription of these three genes. Furthermore, yeast one hybrid and electrophoretic mobility shift assays showed that PagERF81 directly bound to a GCC sequence in the PagCCR1 promoter. No known vessel or fiber cell differentiation related genes were differentially expressed, so the smaller vessel cells and longer fiber cells observed in the Pagerf81 lines might be caused by abnormal lignin deposition in the secondary cell walls. This study provides insight into the regulation of lignin biosynthesis, and a molecular tool to engineer wood with high lignin content, which would contribute to the lignin-related chemical industry and carbon sequestration.


Assuntos
Lignina , Populus , Lignina/metabolismo , Populus/metabolismo , Xilema/metabolismo , Madeira/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
13.
Nat Mater ; 20(6): 859-868, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33603185

RESUMO

Stretchable electronics find widespread uses in a variety of applications such as wearable electronics, on-skin electronics, soft robotics and bioelectronics. Stretchable electronic devices conventionally built with elastomeric thin films show a lack of permeability, which not only impedes wearing comfort and creates skin inflammation over long-term wearing but also limits the design form factors of device integration in the vertical direction. Here, we report a stretchable conductor that is fabricated by simply coating or printing liquid metal onto an electrospun elastomeric fibre mat. We call this stretchable conductor a liquid-metal fibre mat. Liquid metal hanging among the elastomeric fibres self-organizes into a laterally mesh-like and vertically buckled structure, which offers simultaneously high permeability, stretchability, conductivity and electrical stability. Furthermore, the liquid-metal fibre mat shows good biocompatibility and smart adaptiveness to omnidirectional stretching over 1,800% strain. We demonstrate the use of a liquid-metal fibre mat as a building block to realize highly permeable, multifunctional monolithic stretchable electronics.


Assuntos
Materiais Biocompatíveis , Elasticidade , Eletrônica , Metais , Permeabilidade
14.
Langmuir ; 38(49): 15178-15189, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36468673

RESUMO

The lubrication property of implanted biomedical devices is of great significance as it affects the clinical performance owing to direct contact with soft tissues. In the present study, a bioinspired copolymer with dual functions of both self-adhesion and lubrication was synthesized with N-(3-aminopropyl) methacrylamide hydrochloride, gallic acid, and 3-[dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl] azaniumyl] propane-1-sulfonate by free radical polymerization and a carbodiimide coupling reaction. The copolymer was further modified on the surface of poly(vinyl chloride) (PVC) samples using a simple dip-coating method and was characterized by different evaluations including Fourier transform infrared spectroscopy, the water contact angle, X-ray photoelectron spectroscopy, optical interferometry, and atomic force microscopy. Additionally, the results of a series of tribological tests at the microscopic level demonstrated that the friction coefficient of the copolymer-coated PVC samples was significantly reduced compared to that of the bare PVC samples. Furthermore, the pull out test at the macroscopic level was performed using copolymer-coated PVC catheters on a poly(dimethylsiloxane)-based test rig, and the result showed that the copolymer-coated PVC catheters were endowed with a greatly decreased and much more stable pull out force compared with that of the bare PVC catheters. In conclusion, the bioinspired self-adhesive lubricated coating developed herein may be applied as a universal and versatile method to enhance the lubrication performance of implanted biomedical devices.


Assuntos
Adesivos , Cimentos de Resina , Polimerização , Polímeros/química , Microscopia de Força Atômica , Propriedades de Superfície
15.
Environ Res ; 214(Pt 1): 113777, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35780846

RESUMO

Microplastics (MPs) and heavy-metal contamination in freshwater is an increasing concern. Fe, Mn, Pb, Zn, Cr, and Cd are common heavy metals that can easily flow into rivers causing water pollution. Microplastics act as carriers for heavy metals and increase the transport of contaminants in freshwater systems. We investigated the adsorption mechanisms of three kinds of MPs having similar particle sizes, namely polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC), with respect to trace heavy metals of Pb, Cu, Cr, and Cd under different temperature and salinity conditions. The reaction kinetics of the adsorption of different trace heavy metals on different MPs were consistent with both the quasi primary and quasi secondary kinetic models, indicating the complexity of heavy metal adsorption by MPs. The adsorption rate of heavy metal on MPs was mainly controlled by intra-particle diffusion, and the isotherm model indicated that the adsorption of Pb, Cu, Cr, and Cd by MPs occurred in the form of monolayer physical adsorption. Additionally, an increase in temperature and decrease in salinity were favourable to improve the affinity of MPs toward heavy metals (through adsorption). Zeta potential measurements and Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that electrostatic force interaction was the main mechanism of the adsorption process; oxygen-containing functional groups, π-π interaction, and halogen bonds played important roles in the process of adsorption. Furthermore, the growth inhibition and oxidative stress of microalgae Chlorella vulgaris (GY-D27) due to PP, PS, and PVC were analysed; notably, MPs or Pb inhibited the growth of Chlorella vulgaris. However, the reduced toxicity to Chlorella vulgaris, with respect to a mixture of Pb and MPs, was confirmed using superoxide dismutase and catalase enzyme activities. Our results can be applied for the risk assessment of heavy metals and MPs in aquatic environments.


Assuntos
Chlorella vulgaris , Metais Pesados , Microalgas , Oligoelementos , Poluentes Químicos da Água , Adsorção , Cádmio , Chumbo , Microplásticos , Plásticos , Cloreto de Polivinila , Rios
16.
Plant Mol Biol ; 105(6): 625-635, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33481140

RESUMO

KEY MESSAGE: IEF, a novel plasma plasma membrane protein, is important for exine formation in Arabidopsis. Exine, an important part of pollen wall, is crucial for male fertility. The major component of exine is sporopollenin which are synthesized and secreted by tapetum. Although sporopollenin synthesis has been well studied, the transportation of it remains elusive. To understand it, we analyzed the gene expression pattern in tapetal microdissection data, and investigated the potential transporter genes that are putatively regulated by ABORTED MICROSPORES (AMS). Among these genes, we identified IMPERFECTIVE EXINE FORMATION (IEF) that is important for exine formation. Compared to the wild type, ief mutants exhibit severe male sterility and pollen abortion, suggesting IEF is crucial for pollen development and male fertility. Using both scanning and transmission electron microscopes, we showed that exine structure was not well defined in ief mutant. The transient expression of IEF-GFP driven by the 35S promoter indicated that IEF-GFP was localized in plasma membrane. Furthermore, AMS can specifically activate the expression of promoterIEF:LUC in vitro, which suggesting AMS regulates IEF for exine formation. The expression of ATP-BINDING CASSETTE TRANSPORTER G26 (AGCB26) was not affected in ief mutants. In addition, SEM and TEM data showed that the sporopollenin deposition is more defective in abcg26/ief-2 than that of in abcg26, which suggesting that IEF is involved in an independent sporopollenin transportation pathway. This work reveal a novel gene, IEF regulated by AMS that is essential for exine formation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fertilidade/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Biopolímeros/biossíntese , Carotenoides/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Pólen , Nicotiana
17.
Cell Biol Int ; 45(3): 569-579, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33169892

RESUMO

Dental pulp stem cells (DPSCs) are capable of both self-renewal and multilineage differentiation, which play a positive role in dentinogenesis. Studies have shown that tumor necrosis factor-α (TNF-α) is involved in the differentiation of DPSCs under pro-inflammatory stimuli, but the mechanism of action of TNF-α is unknown. Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) is a biomarker of an early inflammatory response that plays a key role in modulating cell differentiation, but the role of RICK in DPSCs is still unclear. In this study, we identified that RICK regulates TNF-α-mediated odontogenic differentiation of DPSCs via the ERK signaling pathway. The expression of the biomarkers of odontogenic differentiation dental matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), biomarkers of odontogenic differentiation, increased in low concentration (1-10 ng/ml) of TNF-α and decreased in high concentration (50-100 ng/ml). Odontogenic differentiation increased over time in the odontogenic differentiation medium. In the presence of 10 ng/L TNF-α, the expression of RICK increased gradually over time, along with odontogenic differentiation. Genetic silencing of RICK expression reduced the expression of odontogenic markers DMP-1 and DSPP. The ERK, but not the NF-κB signaling pathway, was activated during the odontogenic differentiation of DPSCs. ERK signaling modulators decreased when RICK expression was inhibited. PD98059, an ERK inhibitor, blocked the odontogenic differentiation of DPSCs induced by TNF-α. These results provide a further theoretical and experimental basis for the potential use of RICK in targeted therapy for dentin regeneration.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Odontogênese , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Humanos , Fosforilação , Proteínas Quinases/metabolismo , Fatores de Tempo , Adulto Jovem
18.
Front Zool ; 17: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206076

RESUMO

BACKGROUND: Genetic and ecological factors influence morphology, and morphology is compatible with function. The morphology and bite performance of skulls of bats show a number of characteristic feeding adaptations. The great evening bat, Ia io (Thomas, 1902), eats both insects and birds (Thabah et al. J Mammal 88: 728-735, 2007), and as such, it is considered to represent a case of dietary niche expansion from insects to birds. How the skull morphology or bite force in I. io are related to the expanded diet (that is, birds) remains unknown. We used three-dimensional (3D) geometry of the skulls and measurements of bite force and diets from I. io and 13 other species of sympatric or closely related bat species to investigate the characteristics and the correlation of skull morphology and bite force to diets. RESULTS: Significant differences in skull morphology and bite force among species and diets were observed in this study. Similar to the carnivorous bats, bird-eaters (I. io) differed significantly from insectivorous bats; I. io had a larger skull size, taller crania, wider zygomatic arches, shorter but robust mandibles, and larger bite force than the insectivores. The skull morphology of bats was significantly associated with bite force whether controlling for phylogeny or not, but no significant correlations were found between diets and the skulls, or between diets and residual bite force, after controlling for phylogeny. CONCLUSIONS: These results indicated that skull morphology was independent of diet, and phylogeny had a greater impact on skull morphology than diet in these species. The changes in skull size and morphology have led to variation in bite force, and finally different bat species feeding on different foods. In conclusion, I. io has a larger skull size, robust mandibles, shortened dentitions, longer coronoid processes, expanded angular processes, low condyles, and taller cranial sagittal crests, and wider zygomatic arches that provide this species with mechanical advantages; their greater bite force may help them use larger and hard-bodied birds as a dietary component.

19.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878192

RESUMO

Space charge characteristics of cross-linked polyethylene (XLPE) at elevated temperatures have been evidently improved by the graft modifications with ultraviolet (UV) initiation technique, which can be efficiently utilized in industrial cable manufactures. Maleic anhydride (MAH) of representative cyclic anhydride has been successfully grafted onto polyethylene molecules through UV irradiation process. Thermal stimulation currents and space charge characteristics at the elevated temperatures are coordinately analyzed to elucidate the trapping behavior of blocking charge injection and impeding carrier transport which is caused by grafting MAH. It is also verified from the first-principles calculations that the bound states as charge carrier traps can be introduced by grafting MAH onto polyethylene molecules. Compared with pure XLPE, the remarkably suppressed space charge accumulations at high temperatures have been achieved in XLPE-g-MAH. The polar groups on the grafted MAH can provide deep traps in XLPE-g-MAH, which will increase charge injection barrier by forming a charged layer of Coulomb-potential screening near electrodes and simultaneously reduce the electrical mobility of charge carriers by trap-carrier scattering, resulting in an appreciable suppression of space charge accumulations inside material. The exact consistence of experimental results with the quantum mechanics calculations demonstrates a promising routine for the modification strategy of grafting polar molecules with UV initiation technique in the development of high-voltage DC cable materials.


Assuntos
Anidridos Maleicos/química , Polietileno/química , Temperatura , Raios Ultravioleta , Modelos Moleculares , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Prog Mol Subcell Biol ; 58: 61-83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911889

RESUMO

Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.


Assuntos
Biocombustíveis/provisão & distribuição , Etanol/metabolismo , Estudo de Associação Genômica Ampla , Lignina/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Proteômica , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA