Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(5): 2728-2743, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37989715

RESUMO

BACKGROUND: Citrus pulp (CP) is rich in pectin, and studies have shown that pectin possesses antioxidant, anti-inflammatory, and gut microbiota-regulating properties. However, the application of CP in aquafeed is limited. In this study, the effect of dietary inclusion of CP on the intestinal health of largemouth bass (Micropterus salmoides) was investigated. Juveniles of similar size (6.95 ± 0.07 g) were fed isonitrogenous and isoenergetic diets containing different levels of CP (0%, 3%, 6%, 9%, 12%, or 15%) for 58 days. RESULTS: As the level of CP in the feed for largemouth bass increased, the fish's growth performance and intestinal health initially improved and then declined. Adding low doses of CP (≤9%) to the feed had no significant impact on the growth performance of large-mouth black bass, whereas high doses of CP (>9%) significantly reduced their growth performance. Adding 6%, 9%, or 12% of CP to that feed enhanced the expression of genes related to tight junctions, anti-inflammatory activity, anti-apoptotic activity, and antioxidant activity in the intestines of largemouth bass. It reduced intestinal inflammation and improved intestinal nutrient absorption, intestinal mucosal barrier function, and intestinal antioxidant capacity. Moreover, it improved the α-diversity, structure, and function of the intestinal flora. The addition of 6% CP had the most beneficial effect on the intestinal health of largemouth bass. On the other hand, the addition of 15% CP had adverse effects on the intestinal antioxidant capacity and intestinal mucosal barrier function of largemouth bass. CONCLUSION: Adding 6-9% CP to the feed for largemouth bass can improve their intestinal health without having a significant impact on their growth performance. CP could serve as a novel prebiotic and immunostimulant ingredient in aquafeed. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Bass , Animais , Antioxidantes/metabolismo , Bass/genética , Bass/metabolismo , Dieta/veterinária , Intestinos , Anti-Inflamatórios/metabolismo , Pectinas/metabolismo
2.
J Am Chem Soc ; 144(31): 14269-14277, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914188

RESUMO

Although the mass production of synthetic plastics has transformed human lives, it has resulted in waste accumulation on the earth. Here, we report a low-temperature conversion of polyethylene into olefins. By mixing the polyethylene feed with rationally designed ZSM-5 zeolite nanosheets at 280 °C in flowing hydrogen as a carrier gas, light hydrocarbons (C1-C7) were produced with a yield of up to 74.6%, where 83.9% of these products were C3-C6 olefins with almost undetectable coke formation. The reaction proceeds in multiple steps, including polyethylene melting, flowing to access the zeolite surface, cracking on the zeolite surface, formation of intermediates to diffuse into the zeolite micropores, and cracking into small molecules in the zeolite micropores. The ZSM-5 zeolite nanosheets kinetically matched the cascade cracking steps on the zeolite external surface and within micropores by boosting the intermediate diffusion. This feature efficiently suppressed the intermediate accumulation on the zeolite surface to minimize coke formation. In addition, we found that hydrogen participation in the cracking process could hinder the formation of polycyclic species within zeolite micropores, which also contributes to the rapid molecule diffusion. The coking-resistant polyethylene upcycling process at a low temperature not only overturns the general viewpoint for facile coke formation in the catalytic cracking over the zeolites but also demonstrates how the polyethylene-based plastics can be upcycled to valuable chemicals. In addition to the model polyethylene, the reaction system worked efficiently for the depolymerization of multiple practically used polyethylene-rich plastics, enabling an industrially and economically viable path for dealing with plastic wastes.


Assuntos
Coque , Zeolitas , Alcenos/química , Humanos , Hidrogênio , Plásticos , Polietileno , Zeolitas/química
3.
Small ; 18(48): e2204837, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207286

RESUMO

Janus porous biomaterials are gaining increasing attention and there are considerable efforts to develop simple, rapid, and scalable methods capable of tuning micro- and macro-structures. Here, a single-step electro-fabrication method to create a Janus porous film by the electrodeposition of the amino-polysaccharide chitosan is reported. Specifically, a Janus structure emerges spontaneously when electrodeposition is performed at sub-ambient temperature (0-5 °C). Sub-ambient temperature electrodeposition experiments show that: a Janus microstructure emerges (potentially as the result of a subtle alteration of the intermolecular interactions responsible for self-assembly); important microstructural features (pore size, porosity, and thicknesses) can be tuned by conditions; and this method is readily scalable (vs serial printing) and can yield complex tubular structures with Janus faces. In vitro studies demonstrate anisotropic cell guidance, and in vivo studies using a rat calvarial defect model further confirm the beneficial features of such Janus porous film for guided bone regeneration. In summary, these results further demonstrate that electro-fabrication provides a simple and scalable platform technology for the controlled functional structures of soft matter for applications in regenerative medicine.


Assuntos
Materiais Biocompatíveis , Galvanoplastia , Animais , Ratos , Porosidade , Temperatura , Medicina Regenerativa
4.
Small ; 18(41): e2203200, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084167

RESUMO

Polyphosphate (polyP) is one of the most compact inorganic polyanionic biopolymers that participates in various physiological processes. However, the development of polyP-based nanomaterials is still in its infancy. Here, biocompatible polyphosphate-manganese nanosheets are designed and synthesized by a hierarchical assembly strategy. The thickness and the lateral size of the resulting polyP-Mn nanosheets (PMNSs) are 5 nm and 120-130 nm, respectively. Molecular dynamics simulations suggested that the polyP-hexadecyl trimethyl ammonium bromide flat structure possesses a strong aggregating capacity and serves as the template for the 2D assembly of polyP-Mn. The PMNSs can activate the inflammatory response of macrophages resulting in the recovery of innate immunological functions to inhibit tumor proliferation. This work has initiated a new direction in constructing layered polyP-based nanomaterials and provides guidance for biocompatible and biodegradable biopolymer-based materials in the regulation of innate responses.


Assuntos
Manganês , Polifosfatos , Biopolímeros , Cetrimônio , Íons , Polifosfatos/química
5.
Fish Shellfish Immunol ; 127: 1012-1023, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35863540

RESUMO

An 8-weeks feeding trial was conducted to estimate the effects of different viscous cellulose on the intestinal flora and health in juvenile largemouth bass (Micropterus salmoides). Four isoproteic and isolipidic experimental diets were formulated (crude protein 42.50%, crude lipid 13.70%) to contain 8% cellulose (control group; 5.14 mPa s), 8% low viscous carboxymethyl cellulose (CMC) with 800 mPa s (Lvs-CMC group; 182.15 mPa s), 8% middle viscous CMC with 2000 mPa s (Mvs-CMC group; 320.48 mPa s) and 8% high viscous CMC with 5000 mPa s (Hvs-CMC group; 440.65 mPa s), respectively. The weight gain rate, specific growth rate, protein efficiency ratio, protein and lipid deposition rate in the CMC groups were dramatically lower than those in the control group, while feed conversion rate showed an opposite result. Plasma diamine oxidase activity, endothelin-1 and lipopolysaccharide concentrations in the Mvs-CMC and Hvs-CMC groups were significantly higher than in the control group, accompanied by a significant down-regulation of Occludin, Caludin-1 and Caludin-4. Intestinal glutathione concentration, superoxide dismutase and catalase activities in the CMC groups were significantly lower than in the control group, accompanied by a significant up-regulation of Keap1 and down-regulation of Nrf2. Moreover, CMC diets dramatically down-regulated the expression levels of IL-10 and TGF-ß1. Digesta total short chain fatty acid and acetate concentrations in the CMC groups were dramatically higher than in the control group, while butyrate concentration showed an opposite result. The OTU, Sobs, Shannon and Simpson indices of intestinal flora in the CMC groups were dramatically lower than in the control group. Notably, structural analysis showed that dietary CMC dramatically increased the abundance of C. somerae and P. shigelloides, but reduced the abundance of C. colicanis and C. perfringens. In summary, increasing dietary viscosity adversely affects the intestinal flora structure and diversity, increases acetate/butyrate-producing bacterial ratio and the abundance of pathogenic microorganisms, disrupting intestinal flora homeostasis, impairs mucosa barrier function, induces intestinal inflammation and epithelial cell apoptosis in juvenile largemouth bass. Our findings demonstrate that soluble cellulose is more detrimental to intestinal health and growth in juvenile largemouth bass compared to insoluble cellulose, and the adverse effects of soluble cellulose are mainly caused by its viscosity. Importantly, this study demonstrate that viscosity is the main characteristic of non-starch polysaccharides that are detrimental to the intestinal health of fish.


Assuntos
Bass , Microbioma Gastrointestinal , Animais , Butiratos/metabolismo , Celulose/metabolismo , Dieta/veterinária , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipídeos , Fator 2 Relacionado a NF-E2/metabolismo , Viscosidade
6.
Bioorg Med Chem Lett ; 28(3): 284-288, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292228

RESUMO

Phenazine and its derivatives have been widely applied as nucleic acid cleavage agents due to active oxygen activating the C-H bond of the substrate. However, diffusion of oxygen radicals limits their potential applications in the DNA-targeted metal-free drug. Introduction of groove binder moiety such as polyamide enhanced the regional stability of radical molecules and reduced cytotoxicity of the drugs. In this work, we described the design and synthesis of a polyamide-modified phenazine-di-N-oxide as a DNA double-strand cleavage agent. The gel assays showed the hybrid conjugates can effectively break DNA double strands in a non-random manner under physiological conditions. The probable binding mode to DNA was investigated by sufficient spectral experiments, revealing weak interaction between hybrid ligand and nucleic acid molecules. The results of our study have implications on the design of groove-binding hybrid molecules as new artificial nucleases and may provide a strategy for developing efficient and safe DNA cleavage reagents.


Assuntos
Clivagem do DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Nylons/farmacologia , Fenazinas/farmacologia , Relação Dose-Resposta a Droga , Estrutura Molecular , Nylons/química , Fenazinas/química , Plasmídeos/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Biomed Environ Sci ; 30(1): 22-34, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28245896

RESUMO

OBJECTIVE: To provide a feasible and cost-effective next-generation sequencing (NGS) method for accurate identification of viral pathogens in clinical specimens, because enormous limitations impede the clinical use of common NGS, such as high cost, complicated procedures, tremendous data analysis, and high background noise in clinical samples. METHODS: Viruses from cell culture materials or clinical specimens were identified following an improved NGS procedure: reduction of background noise by sample preprocessing, viral enrichment by barcoded oligonucleotide (random hexamer or non-ribosomal hexanucleotide) primer-based amplification, fragmentation-free library construction and sequencing of one-tube mixtures, as well as rapid data analysis using an in-house pipeline. RESULTS: NGS data demonstrated that both barcoded primer sets were useful to simultaneously capture multiple viral pathogens in cell culture materials or clinical specimens and verified that hexanucleotide primers captured as many viral sequences as hexamers did. Moreover, direct testing of clinical specimens using this improved hexanucleotide primer-based NGS approach provided further detailed genotypes of enteroviruses causing hand, foot, and mouth disease (HFMD) and identified other potential viruses or differentiated misdiagnosis events. CONCLUSION: The improved barcoded oligonucleotide primer-based NGS approach is simplified, time saving, cost effective, and appropriate for direct identification of viral pathogens in clinical practice.


Assuntos
Enterovirus/classificação , Herpesvirus Humano 4/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Técnicas de Laboratório Clínico , Código de Barras de DNA Taxonômico , Primers do DNA , Enterovirus/genética , Enterovirus/isolamento & purificação , Herpesvirus Humano 4/genética , Humanos , Vírus da Influenza B/genética , Reação em Cadeia da Polimerase em Tempo Real
8.
Biomacromolecules ; 15(8): 3112-8, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25023878

RESUMO

In the present study, block copolymers were first synthesized through a tandem ring-opening metathesis polymerization (ROMP) and conventional enzymatic ring-opening polymerization (eROP) from hydroxyl initiator. Furthermore, a novel synthesis route, single-step eROP from ester precursor was successfully developed to synthesize targeted copolymers. The as-prepared polymers were analyzed by NMR, GPC, DSC, and MALDI-TOF-MS. There was no difference in the characteristic peaks of NMR between the end products obtained from these two synthetic routes. The GPC data showed that the copolymer obtained from single-step eROP was similar to the end product obtained from the traditional multistep synthesis method. Afterward, we used model compounds to carry out the conventional eROP and the single-step eROP. Finally, through the kinetic analysis and structural analysis of the resulting product, a reasonable initiation mechanism for this single-step eROP was elucidated.


Assuntos
Ésteres/química , Polimerização , Polímeros/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Polímeros/síntese química
9.
Theranostics ; 14(9): 3739-3759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948054

RESUMO

Background: The repair of osteoporotic bone defects remains challenging due to excessive reactive oxygen species (ROS), persistent inflammation, and an imbalance between osteogenesis and osteoclastogenesis. Methods: Here, an injectable H2-releasing hydrogel (magnesium@polyethylene glycol-poly(lactic-co-glycolic acid), Mg@PEG-PLGA) was developed to remodel the challenging bone environment and accelerate the repair of osteoporotic bone defects. Results: This Mg@PEG-PLGA gel shows excellent injectability, shape adaptability, and phase-transition ability, can fill irregular bone defect areas via minimally invasive injection, and can transform into a porous scaffold in situ to provide mechanical support. With the appropriate release of H2 and magnesium ions, the 2Mg@PEG-PLGA gel (loaded with 2 mg of Mg) displayed significant immunomodulatory effects through reducing intracellular ROS, guiding macrophage polarization toward the M2 phenotype, and inhibiting the IκB/NF-κB signaling pathway. Moreover, in vitro experiments showed that the 2Mg@PEG-PLGA gel inhibited osteoclastogenesis while promoting osteogenesis. Most notably, in animal experiments, the 2Mg@PEG-PLGA gel significantly promoted the repair of osteoporotic bone defects in vivo by scavenging ROS and inhibiting inflammation and osteoclastogenesis. Conclusions: Overall, our study provides critical insight into the design and development of H2-releasing magnesium-based hydrogels as potential implants for repairing osteoporotic bone defects.


Assuntos
Regeneração Óssea , Hidrogéis , Hidrogênio , Magnésio , Osteogênese , Osteoporose , Polietilenoglicóis , Espécies Reativas de Oxigênio , Animais , Magnésio/química , Magnésio/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Polietilenoglicóis/química , Hidrogéis/química , Osteoporose/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Hidrogênio/farmacologia , Hidrogênio/administração & dosagem , Hidrogênio/química , Células RAW 264.7 , Regeneração Óssea/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Alicerces Teciduais/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Poliésteres
10.
Adv Sci (Weinh) ; 11(13): e2305756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189598

RESUMO

Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.


Assuntos
Periodontite , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Porosidade , Osteogênese , Colágeno/química , Periodontite/tratamento farmacológico
11.
Pharmaceutics ; 16(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258079

RESUMO

Agglomerate formulations for dry powder inhalation (DPI) formed with fine particles are versatile means for the highly efficient delivery of budesonide. However, uncontrolled agglomeration induces high deposition in the upper airway, causing local side effects due to high mechanical strength, worse deagglomeration, and poor fine-particle delivery. In the present study, fine lactose was mechanically dry-coated prior to particle agglomeration, and the agglomerates were then spheroidized via ultrasonic vibration to improve their aerosol performance. The results showed that the agglomerate produced with the surface-enriched hydrophobic magnesium stearate and ultrasonic vibration demonstrated improved aerosolization properties, benefiting from their lower mechanical strength, less interactive cohesive force, and improved fine powder dispersion behavior. After dispersion utilizing a Turbuhaler® with a pharmaceutical cascade impactor test, a fine particle fraction (FPF) of 71.1 ± 1.3% and an artificial throat deposition of 19.3 ± 0.4% were achieved, suggesting the potential to improve the therapeutic outcomes of budesonide with less localized infections of the mouth and pharynx.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36767743

RESUMO

With the advancement of medicine, more and more researchers have turned their attention to the study of fetal genetic diseases in recent years. However, it is still a challenge to detect genetic diseases in the fetus, especially in an area lacking access to healthcare. The existing research primarily focuses on using teenagers' or adults' face information to screen for genetic diseases, but there are no relevant directions on disease detection using fetal facial information. To fill the vacancy, we designed a two-stage ensemble learning model based on sonography, Fgds-EL, to identify genetic diseases with 932 images. Concretely speaking, we use aggregated information of facial regions to detect anomalies, such as the jaw, frontal bone, and nasal bone areas. Our experiments show that our model yields a sensitivity of 0.92 and a specificity of 0.97 in the test set, on par with the senior sonographer, and outperforming other popular deep learning algorithms. Moreover, our model has the potential to be an effective noninvasive screening tool for the early screening of genetic diseases in the fetus.


Assuntos
Feto , Cuidado Pré-Natal , Gravidez , Adulto , Feminino , Adolescente , Humanos , Ultrassonografia , Face , Aprendizado de Máquina
13.
Nat Biomed Eng ; 5(11): 1274-1287, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635819

RESUMO

Because of the blood-tumour barrier and cross-reactivity with healthy tissues, immune checkpoint blockade therapy against glioblastoma has inadequate efficacy and is associated with a high risk of immune-related adverse events. Here we show that anti-programmed death-ligand 1 antibodies conjugated with multiple poly(ethylene glycol) (PEG) chains functionalized to target glucose transporter 1 (which is overexpressed in brain capillaries) and detaching in the reductive tumour microenvironment augment the potency and safety of checkpoint blockade therapy against glioblastoma. In mice bearing orthotopic glioblastoma tumours, a single dose of glucosylated and multi-PEGylated antibodies reinvigorated antitumour immune responses, induced immunological memory that protected the animals against rechallenge with tumour cells, and suppressed autoimmune responses in the animals' healthy tissues. Drug-delivery formulations leveraging multivalent ligand interactions and the properties of the tumour microenvironment to facilitate the crossing of blood-tumour barriers and increase drug specificity may enhance the efficacy and safety of other antibody-based therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Encéfalo , Glioblastoma/tratamento farmacológico , Camundongos , Polímeros , Microambiente Tumoral
14.
Carbohydr Polym ; 257: 117573, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541632

RESUMO

Chondroitin sulfate (ChS) has shown promising results in promoting cell proliferation and antithrombogenic activity. To engineered develop a dual-function vascular scaffold with antithrombosis and endothelialization, ChS was tethered to collagen to accelerate the growth of endothelial cells and prevent platelet activation. First, ChS was used to conjugate with collagen to generate glycosylated products (ChS-COL) via reductive amination. Then, the fabricated ChS-COL conjugates were electrospun into nanofibers and their morphologies and physicochemical characteristics, cell-scaffold responses and platelet behaviors upon ChS-COL nanofibers were comprehensively characterized to evaluate their potential use for small-diameter vascular tissue-engineered scaffolds. The experimental results demonstrated that the ChS modified collagen electrospun nanofibers were stimulatory of endothelial cell behavior, alleviated thrombocyte activation and maintained an antithrombotic effect in vivo in 10-day post-transplantation. The ChS-COL scaffolds encouraged rapid endothelialization, thus probably ensuring the antithrombotic function in long-term implantation, suggesting their promise for small-diameter vascular tissue engineering applications.


Assuntos
Sulfatos de Condroitina/química , Colágeno/química , Nanofibras/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Animais , Plaquetas/citologia , Artérias Carótidas/patologia , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Teste de Materiais , Microscopia Eletrônica de Varredura , Fenótipo , Ativação Plaquetária , Poliésteres/química , Coelhos , Suínos , Engenharia Tecidual/métodos
15.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 38(4): 380-384, 2020 Aug 01.
Artigo em Zh | MEDLINE | ID: mdl-32865355

RESUMO

OBJECTIVE: To investigate the clinical efficacy of a modified paramedian lower lip-submandibular approach for maxillary (subtotal) total resection. METHODS: Eleven patients of maxillary tumors underwent maxillary (subtotal) total resection through the modified paramedian lower lip-submandibular approach. Clinical follow-up visits were conducted to evaluate appearance restoration, facial nerve functional status, parotid gland functional status, and orbital region complication. RESULTS: During the follow-up period of 6-36 months, the appearance of all 11 patients recovered well. All cases presented hidden scars. No facial nerve and parotid duct injury, lower eyelid edema, lower eyelid ectropion, or epiphora in all cases was observed. CONCLUSIONS: Applying modified paramedian lower lip-submandibular approach to maxillary (subtotal) total resection effectively reduces incidence of orbital region complications including lower eyelid edema, lower eyelid ectropion, and epiphora, which often occur to traditional approach. The modified approach produces more subtle scars than other methods and should be applied to treatment of maxillary (subtotal) total resection.


Assuntos
Lábio , Neoplasias Maxilares , Nervo Facial , Humanos , Maxila , Retalhos Cirúrgicos
16.
Sci Total Environ ; 651(Pt 1): 427-434, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243162

RESUMO

In this work, Tenax consecutive extractions of polycyclic aromatic hydrocarbons (PAHs) were conducted in two spiked sediments to investigate the influence of different Tenax addition amounts and desorption times on the rapidly desorbing fraction of PAHs, and to determine a reliable method for estimating PAHs bioavailability. The results indicated that a large Tenax addition amount has a positive effect on the desorption of PAHs from sediments. The desorption amounts of target PAHs compounds (3-ring phenanthrene and 4-ring fluoranthene) increased as the Tenax: sediment ratios increased from 0.25 to 2 in two spiked sediments. The highest desorption percentages of phenanthrene and fluoranthene were 48.91% and 34.70% for Jialing industrial park sediment, and 43.36% and 33.24% for Huanghuayuan bridge sediment, respectively. The results of desorption kinetics were suitably fitted with first order three-compartment model to estimate the rapidly desorbing fraction, Moreover, the Tenax: sediment ratio of 1 and desorption time of 24 h were found to be suitable for the desorption of phenanthrene and fluoranthene from sediments. The PAHs in sediments were biodegraded well by the bacterial strain J1-q. Comparing the maximum biodegraded amount of target PAHs in 30 days and the desorbed fraction over 400 h, the results showed that Tenax had better correlation with the high molecular weight fluoranthene than with the low molecular weight phenanthrene.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polímeros/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Biodegradação Ambiental , Disponibilidade Biológica , Cinética , Modelos Químicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Polímeros/análise , Poluentes Químicos da Água/análise
17.
Chemosphere ; 223: 140-147, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30772593

RESUMO

A strain KL (Klebsiella sp.), with a high polycyclic aromatic hydrocarbons (PAHs) degradation efficiency, was isolated and purified. Immobilization of strain KL using a boric acid-CaCl2 cross-linking method based on polyvinyl alcohol (PVA)-sodium alginate (SA)-nano alumina (ALNPs) composite was investigated for removal of phenanthrene (PHE), fluoranthene (FLA), and pyrene (PYR) in soil washing effluent. The concentration of PVA, SA, and ALNPs in immobilized beads had significant effects on the physicochemical properties and biodegradation performance. When beads had a PVA, SA, and ALNPs content of 10% (w/v), 0.8% (w/v), and 0.7% (w/v), and the initial biomass dosage was 10% (v/v), the biodegradation efficiency and mass transfer performance of the immobilized beads were optimal with the specific surface area of 13.3971 m2/g. Scanning electron microscopy (SEM) showed that the surface of immobilized beads was dense. The growth and adhesion of cells inside the beads were adequate, and pores of the beads were abundant and irregularly staggered. The immobilization method was successfully applied to the treatment of the three PAHs in soil washing effluent. Adsorption of beads contributed to PAHs removal in the initial stage of degradation. Higher residual concentrations of Tween 80 in the soil washing effluent have toxic effects on strain KL growth and reduce the PAHs degradation capacity. Tween 80 of 2500 mg/L was proper conditions for PAHs biodegradation efficiency. Compared to freely suspended KL cells, the removal rates of PHE, FLA, and PYR using the immobilization method on the 30th day were increased by 15.91%, 17.07%, and 19.08%, respectively.


Assuntos
Biodegradação Ambiental , Klebsiella/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Solo/química , Adsorção , Fluorenos/metabolismo , Klebsiella/isolamento & purificação , Fenantrenos/metabolismo , Polissorbatos , Pirenos/metabolismo , Poluentes do Solo/metabolismo
18.
Pest Manag Sci ; 75(7): 1993-1999, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30610748

RESUMO

BACKGROUND: It is difficult to efficiently silence gene expression in some insects, probably because of the degradation of dsRNA by enzymes present in the gut and hemolymph post-oral feeding or body injecting of dsRNA. We previously developed a nanocarrier delivery system that can systemically deliver dsRNA into chewing mouthpart insects by oral feeding and efficiently silence gene expression. For the purpose of pest control in the field, there is a great demand to develop a spray method to apply dsRNA formulation. RESULTS: A formulation of the nanocarrier/dsRNA/detergent was developed and could be easily applied just by dropping it on the notum of the aphid. The formulation penetrated the body wall into the hemocoel and then spread into various tissues within 1 h. The delivered dsRNA efficiently silenced the target gene expression at a high knockdown effect (95.4%) and the aphid population was largely suppressed (80.5%). CONCLUSION: A novel dsRNA formulation was developed with the help of a nanocarrier and detergent that can quickly penetrate the insect body wall and efficiently silence gene expression. The formulation may provide a fast and easy tool for gene silence in some tough insects and for pest control in the field. © 2019 Society of Chemical Industry.


Assuntos
Afídeos/genética , Afídeos/metabolismo , Controle de Insetos/métodos , Interferência de RNA , RNA de Cadeia Dupla/administração & dosagem , Administração Cutânea , Animais , Detergentes/química , Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Nanoestruturas , Polímeros , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
19.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(4): 403-407, 2019 Aug 01.
Artigo em Zh | MEDLINE | ID: mdl-31512834

RESUMO

OBJECTIVE: To study the accuracy of 3D printing implant-guided anterior tooth implantation under flap or flapless surgery. METHODS: Twenty-one cases (32 teeth) with missing teeth were divided into two groups: tooth implantation on the maxillary models under flap surgery (FP group) and tooth implantation on the maxillary models under flapless surgery (FPS group). A dental implant guide was designed and used in the two groups. The actual position of the dental implants in the two groups was compared with the preplanned deviation values of implant top, bottom, vertical distance, and angle deviation. SPSS 19.0 software was used for statistical analysis. RESULTS: The deviation values of implant top, bottom, vertical distance, and angle were significantly lower in the FP group than in the FPS group (P<0.05). CONCLUSIONS: High accuracy of tooth implantation can be realized by using the 3D printing implant guide. The different surgical methods influence the precision of tooth implantation. Clinicians can choose the surgery reasonably depending on the actual situation.


Assuntos
Implantes Dentários , Dente , Tomografia Computadorizada de Feixe Cônico , Implantação Dentária Endóssea , Impressão Tridimensional
20.
Nanoscale ; 11(46): 22369-22377, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31729502

RESUMO

Atomic layer deposited (ALD) ultra-thin alumina film is proposed to control the operational lifetimes of fully biodegradable (FB-) surface sensitive surface acoustic wave (SAW) devices. SAW devices encapsulated with conventional thick organic materials fail to function effectively, while devices with an ultra-thin alumina encapsulation layer (AEL) function normally with high performance. After being subjected to degradation in water, a FB-SAW device with no AEL starts to degrade immediately and fails within 8 h, due to dissolution of the tungsten electrode and piezoelectric material (ZnO). The coating of an ultra-thin AEL on the surfaces prevents SAW devices from undergoing degradation in water and enables SAW devices to perform normally before the AEL is dissolved. The stable operation lifetimes of SAW devices are linearly dependent on the AEL thickness, thus allowing for the design of devices with precisely controlled operational lifetimes and degradation times. The results show that all the materials used could be degraded; also, in vitro cytotoxicity tests indicate that the encapsulated FB-SAW devices are biocompatible, and cells can adhere and proliferate on them normally, demonstrating great potential for broader biodegradable electronic device applications.


Assuntos
Óxido de Alumínio/química , Eletrônica , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrólise , Óxidos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tungstênio/química , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA