Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 16(1): 171, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978312

RESUMO

BACKGROUND: Pyruvate decarboxylase (PDC) is a well-known pathway for ethanol production, but has not been demonstrated for high titer ethanol production at temperatures above 50 °C. RESULT: Here we examined the thermostability of eight PDCs. The purified bacterial enzymes retained 20% of activity after incubation for 30 min at 55 °C. Expression of these PDC genes, except the one from Zymomonas mobilis, improved ethanol production by Clostridium thermocellum. Ethanol production was further improved by expression of the heterologous alcohol dehydrogenase gene adhA from Thermoanaerobacterium saccharolyticum. CONCLUSION: The best PDC enzyme was from Acetobactor pasteurianus. A strain of C. thermocellum expressing the pdc gene from A. pasteurianus and the adhA gene from T. saccharolyticum was able to produce 21.3 g/L ethanol from 60 g/L cellulose, which is 70% of the theoretical maximum yield.


Assuntos
Clostridium thermocellum/enzimologia , Clostridium thermocellum/metabolismo , Etanol/metabolismo , Piruvato Descarboxilase/metabolismo , Acetobacteraceae/enzimologia , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Celulose/metabolismo , Clostridium thermocellum/genética , Fermentação , Engenharia Metabólica , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/isolamento & purificação , Temperatura , Thermoanaerobacterium/genética , Thermoanaerobacterium/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
2.
Metab Eng ; 15: 151-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202749

RESUMO

In Clostridium thermocellum, a thermophilic anaerobic bacterium able to rapidly ferment cellulose to ethanol, pyruvate kinase (EC 2.7.1.40) is absent based on both the genome sequence and enzymatic assays. Instead, a new pathway converting phosphoenolpyruvate to pyruvate via a three-step pathway involving phosphoenolpyruvate carboxykinase, NADH-linked malate dehydrogenase, and NADP-dependent malic enzyme has been found. We examined the impact of targeted modification of enzymes associated with this pathway, termed the "malate shunt", including expression of the pyruvate kinase gene from Thermoanaerobacterium saccharolyticum, mutation of the phosphoenolpyruvate carboxykinase and deletion of malic enzyme gene. Strain YD01 with exogenous pyruvate kinase, in which phosphoenolpyruvate carboxykinase expression was diminished by modifying the start codon from ATG to GTG, exhibited 3.25-fold higher ethanol yield than the wild-type strain. A second strain, YD02 with exogenous pyruvate kinase, in which the gene for malic enzyme and part of malate dehydrogenase were deleted, had over 3-fold higher ethanol yield than the wild-type strain.


Assuntos
Carbono/metabolismo , Celulose/metabolismo , Clostridium thermocellum/fisiologia , Etanol/metabolismo , Melhoramento Genético/métodos , Piruvato Quinase/fisiologia , Thermoanaerobacter/fisiologia , Etanol/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA