Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mikrochim Acta ; 190(4): 118, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884097

RESUMO

A novel molecular-imprinted polymer (MIP)-based enzyme-free biosensor was created for the selective detection of glycoprotein transferrin (Trf). For this purpose, MIP-based biosensor for Trf was prepared by electrochemical co-polymerization of novel hybrid monomers 3-aminophenylboronic acid (M-APBA) and pyrrole on a glassy carbon electrode (GCE) modified with carboxylated multi-walled carbon nanotubes (cMWCNTs). Hybrid epitopes of Trf (C-terminal fragment and glycan) have been selected as templates. The produced sensor exhibited great selective recognition ability toward Trf under optimal preparation conditions, offering good analytical range (0.125-1.25 µM) with a detection limit of 0.024 µM. The proposed hybrid epitope in combination with hybrid monomer-mediated imprinting strategy was successfully applied to detect Trf in spiked human serum samples, with recoveries and relative standard deviations ranging from 94.7 to 106.0% and 2.64 to 5.32%, respectively. This study provided a reliable protocol for preparing hybrid epitopes and monomers-mediated MIP for the synergistic and effective determination of glycoprotein in complicated biological samples.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Nanotubos de Carbono , Humanos , Polímeros , Epitopos , Impressão Molecular/métodos , Transferrina , Glicoproteínas , Técnicas Biossensoriais/métodos
2.
J Sep Sci ; 43(6): 1173-1182, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31919992

RESUMO

Curcumin widely exists in food, and rapid selective and accurate detection of curcumin have great significance in chemical industry. In this experiment, a new magnetic biocompatibility molecularly imprinted polymer was prepared with nontoxic and biocompatible Zein to adsorb curcumin selectively. The polymer has high biocompatibility, good adsorption capacity, and specific adsorption for curcumin. Combined with portable electrochemical workstations, the polymer can be used to detect curcumin rapidly and cost-effectively. Using curcumin as a template and Zein as the crosslinking agent, the polymers were synthesized on the surface of Fe3 O4 particles for solid phase extraction. The experimental results showed that the polymer reached large adsorption capacity (32.12 mg/g) with fast kinetics (20 min). The adsorption characteristic of the polymer followed the Langmuir isotherm and pseudo-second-order kinetic models. Hexacyanoferrate was used as electrochemical probe to generate signals, and the linear range was 5-200 µg/mL for measuring curcumin. The experimental analysis showed that the polymer was an ideal material for selective accumulation of curcumin from complex samples. This approach has been successfully applied to the determination of curcumin in food samples with electrochemical detection, indicating that this is a feasible and practical technique.


Assuntos
Materiais Biocompatíveis/química , Curcumina/análise , Técnicas Eletroquímicas , Nanopartículas de Magnetita/química , Impressão Molecular , Polímeros/química , Adsorção , Tamanho da Partícula , Propriedades de Superfície
3.
J Sep Sci ; 41(15): 3060-3068, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29878532

RESUMO

Thermo-responsive magnetic molecularly imprinted polymers were prepared by simple surface molecular imprinting polymerization for the selective adsorption and enrichment of formononetin from Trifolium pretense by temperature regulation. Using formononetin as a template, N-isopropylacrylamide as the thermo-responsive functional monomer, and methacrylic acid as an assisting functional monomer, the polymers were synthesized on the surface of the magnetic substrate. The results show that imprinted polymers attained controlled adsorption of formononetin in response to the temperature change, with large adsorption capacity (16.43 mg/g), fast kinetics (60 min) and good selectivity at 35°C compared with that at 25 and 45°C. The selectivity experiment indicated that the materials had excellent recognition ability for formononetin and the selectivity factors were between 1.32 and 2.98 towards genistein and daidzein. The excellent linearity was attained in the range of 5-100 µg/mL, with low detection limits and low quantitation limits of 0.017 and 0.063 µg/mL, respectively. Furthermore, the thermo-responsive magnetic molecularly imprinted polymers were successfully utilized for enriching and purifying formononetin from Trifolium pretense. The analytical results indicate that the imprinted polymers are promising materials for selective identification and enrichment of formononetin in complicated herbal medicines by simple temperature-responsive regulation.


Assuntos
Isoflavonas/química , Impressão Molecular , Polímeros/química , Temperatura , Adsorção , Isoflavonas/isolamento & purificação , Fenômenos Magnéticos , Polimerização , Polímeros/síntese química , Propriedades de Superfície , Trifolium/química
4.
Am J Chin Med ; 52(4): 1137-1154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38879746

RESUMO

Flavonol and flavonoid compounds are important natural compounds with various biomedical activities. Therefore, it is of great significance to develop a strategy for the specific extraction of flavonol and flavonoid compounds. Quercetin is a well-studied flavonoid possessing many health benefits. This compound is a versatile antioxidant known to possess protective abilities against body tissue injury induced by pathological situations and various drug toxicities. Although quercetin is widely distributed in many plants, its content generally is not very high. Therefore, the specific extraction of quercetin as well as other flavonol and flavonoid compounds has profound significance. In this work, the quercetin molecularly imprinting polymer (QMIP) was successfully prepared, in which a typical flavonol quercetin was selected as the template molecule. QMIP was synthesized by performing the surface molecular imprinting technology on the surface of NH2-MIL-101(Fe). Our study results showed that QMIP exhibited quick binding kinetic behavior, a high adsorption capacity (57.04[Formula: see text]mg/g), and the specific recognition ability toward quercetin compared with structurally distinct compounds (selective [Formula: see text]). The specific adsorption ability of quercetin by QMIP was further explained using computation simulation that molecules with non-planar 3D conformations hardly entered the molecularly imprinted cavities on QMIP. Finally, QMIP was successfully used for the specific extraction of quercetin and five other flavonol and flavonoid compounds in the crude extracts from Sapium sebiferum. This study proposes a new strategy to synthesize the molecularly imprinted polymer based on a single template for enriching and loading a certain class of active ingredients with similar core structures from variable botanicals.


Assuntos
Flavonoides , Flavonóis , Impressão Molecular , Polímeros Molecularmente Impressos , Quercetina , Quercetina/isolamento & purificação , Quercetina/química , Flavonoides/isolamento & purificação , Flavonoides/química , Flavonóis/isolamento & purificação , Flavonóis/química , Polímeros Molecularmente Impressos/química , Antioxidantes/isolamento & purificação , Adsorção , Polímeros/química
5.
Food Chem ; 425: 136486, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267785

RESUMO

An imbalance of l-tryptophan (l-Trp), a basic component of a healthy diet, is harmful to human health. Traditional methods for detecting l-Trp have many limitations. To correct a deficiency or excess of l-Trp in human diets, it is necessary to develop a novel method that is rapid, low-cost, and high-sensitivity. Herein, a molecularly imprinted polysaccharide electrochemical sensor termed MIP/CS/MWCNTs/GCE (molecularly imprinted polymer/chitosan/multiwalled carbon nanotubes/glassy carbon electrode) targeting l-Trp was first constructed on a glassy carbon electrode, which was modified with multiwalled carbon nanotubes and chitosan using bifunctional monomers. The MIP/CS/MWCNTs/GCE obtained a wide linear range (1-300 µM) for detecting l-Trp and accurately detected the proportion of l-Trp in mixtures of Trp enantiomers. In milk samples, the spiked recoveries of l-Trp were 86.50 to 99.65%. The MIP/CS/MWCNTs/GCE electrochemical sensor possessed good recognition and detection performance for l-Trp and has promising potential for practical application.


Assuntos
Quitosana , Impressão Molecular , Nanotubos de Carbono , Humanos , Impressão Molecular/métodos , Polímeros , Triptofano , Técnicas Eletroquímicas/métodos , Eletrodos , Dieta , Limite de Detecção
6.
Anal Chim Acta ; 1186: 339117, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756250

RESUMO

Transferrin (Trf) is a new type of active drug targeting carrier and disease biomarker that regulates the balance of iron ions in human body. The recognition and isolation of Trf is of great significance for disease diagnosis and treatment. Thus, a new type of magnetic dual affinity epitope molecularly imprinted polymer coated on Fe3O4 nanoparticles (Fe3O4@DEMIP) was successfully prepared for specific recognition of Trf. C-terminal nonapeptide and Trf glycan were selected as bi-epitope templates for metal chelation and boron affinity immobilization, respectively. 4-vinylphenylboric acid (4-VP), N-isopropyl acrylamide (NIPAM) and zinc acrylic were used as functional monomers. Results showed that Fe3O4@DEMIP exhibited excellent specific recognition ability adsorption capacity toward Trf, with an adsorption of 43.96 mg g-1 (RSD = 3.28%) and a more satisfactory imprinting factor (about 6.60) than that of other reported imprinting methods. In addition, Fe3O4@DEMIP displayed pH, temperature and magnetic sensitivity properties to realize temperature and pH-controlled recognition and release of target proteins and magnetic rapid separation. Furthermore, the Fe3O4@DEMIP coupled with high-performance liquid chromatography (HPLC) analysis was successfully used for specific recognition of Trf in biosamples. This study provides a reliable protocol for preparing metal chelation and boron affinity dual affinity bi-epitope molecularly imprinted polymers for synergistic and efficient recognition of biomacromolecules in the complex biological systems.


Assuntos
Impressão Molecular , Polímeros , Adsorção , Epitopos , Humanos , Transferrina
7.
J Pharm Biomed Anal ; 192: 113661, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33053507

RESUMO

Paclitaxel (PTX) is a powerful anticancer natural product, with its separation and purification having been widely studied. In this work, new molecular imprinted polymers (MIPs) using deep eutectic solvents (DESs) with different molar ratios were prepared as functional monomers. These were then used as adsorbents in solid phase extraction (SPE) for the separation of PTX from its structural analogs. The polymers were characterized by energy disperive X-rays (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FT-IR). The results suggested that the formative regular DES-MIPs had an even pore-size distribution and a large specific surface area. The dynamic adsorption and static adsorption showed that the DES-MIPs had excellent adsorption performance, with a maximum adsorption capacity and optimum adsorption time of 87.08 mg/g and 180 min, respectively. The selective adsorption experiments showed that the material had outstanding selectivity, and the maximum selectivity factor was 6.20. For stability, after six consecutive adsorption and desorption cycles, the DES-MIPs maintained the perfect stability and reusability. Furthermore, the fabricated SPE column was successfully utilized for extracting and eluting PTX. This study provides a reliable protocol for the separation and purification PTX from its structural analogs and the DES-MIPs materials have excellent potential application value in pharmaceutical industry.


Assuntos
Impressão Molecular , Adsorção , Polímeros Molecularmente Impressos , Paclitaxel , Extração em Fase Sólida , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Talanta ; 219: 121283, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887173

RESUMO

In this report, a non-toxic Dual Template Molecularly Imprinted Polymers (DMIPs) was synthesized with quercetin and schisandrin b as template molecules, using deep-eutectic solvents as functional monomers for the first time. The DMIPs were used to efficiently and simultaneously enrich quercetin and schisandrin b from the mixed crude extracts of penthorum and schisandra. The results indicated that the DMIPs exhibited rapid adsorption kinetics (80 min for adsorption equilibrium) and high selectivity. The largest adsorbing capacities to quercetin and schisandrin b were 23.58 mg/g and 41.64 mg/g, respectively. After presaturation with quercetin and schisandrin b, the nontoxic saturated DMIPs were fed to the mice. Blood samples of the mice were taken and both quercetin and schisandrin b were successfully detected. The pharmacokinetics of quercetin and schisandrin b were similar to reports in the literature where mice were directly fed with botanicals. Our study provides a reliable protocol such that DMIPs can be used to separate and enrich several target molecules simultaneously from complex biological systems. Our findings suggested that the DMIPs have potential application as a drug delivery system of compound herbal formulas.


Assuntos
Impressão Molecular , Adsorção , Animais , Camundongos , Polímeros Molecularmente Impressos , Polímeros , Extração em Fase Sólida
9.
Food Chem ; 326: 126969, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32438229

RESUMO

Biocompatible magnetic molecularly imprinted polymers (BMMIPs) were prepared with Zein for the first time, and were used to enrich tetracycline compounds selectively. Innovative combination of BMMIPs and electrochemistry to obtain lower detection line to satisfy industrial detection demands. Using Zein as the crosslinking agent, the polymers were synthesized on the surface of Fe3O4 particles. The scanning electron microscope, transmission electron microscope and X-ray diffraction technologies were used to characterize BMMIPs. Through optimization, BMMIPs attained large adsorption capacity (236.40 mg/g) with fast kinetics (40 min) and followed the Langmuir isotherm and pseudo-second-order kinetic models. BMMIPs had good recognition ability, the selective factors of oxytetracycline, chlortetracycline, doxycycline were 4.78, 4.23, and 3.39, respectively. Excellent linearity was attained in the range of 0.025-500 µg/mL, with low detection limits and low quantitation limits of 0.025 and 0.083 µg/mL. According to our exploring, BMMIPs was ideal materials for enrichment of tetracycline in complex biological samples.


Assuntos
Materiais Biocompatíveis/química , Contaminação de Alimentos/análise , Leite/química , Impressão Molecular/métodos , Tetraciclinas/análise , Adsorção , Animais , Antibacterianos/análise , Antibacterianos/química , Antibacterianos/isolamento & purificação , Técnicas Eletroquímicas , Análise de Alimentos/métodos , Limite de Detecção , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Polímeros/química , Tetraciclina/análise , Tetraciclina/química , Tetraciclina/isolamento & purificação , Tetraciclinas/química , Tetraciclinas/isolamento & purificação , Difração de Raios X , Zeína/química
10.
Talanta ; 219: 121350, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887078

RESUMO

In this work, efficient, sensitive bifunctional-monomer chitosan magnetic molecularly imprinted polymers (BCMMIPs) were fabricated and successfully applied to concentrate the metabolites of Epimedium flavonoids in rat testis and bone that were later analyzed using UPLC-Q-TOF-MS. Using chitosan and methacrylic acid as co-functional monomers, BCMMIPs exhibited a large adsorption capacity (7.60 mg/g), fast kinetics (60 min), and good selectivity. Chitosan is bio-compatible and non-toxic, and methacrylic acid provides multiple hydrogen bond donors. The BCMMIPs were injected into rat testis to specifically enrich the total flavonoid metabolites in vivo and were used to extract metabolites from bone in vitro. The results showed that the BCMMIPs coupled with UPLC-Q-TOF-MS successfully identified 28 compounds from testis and 18 compounds from bone, including 19 new compounds. This study provided a reliable protocol for the concentration of metabolites from complex biological samples, and several new metabolites of Epimedium flavonoids were found in vivo and in vitro.


Assuntos
Quitosana , Epimedium , Impressão Molecular , Adsorção , Animais , Glicosídeos , Fenômenos Magnéticos , Masculino , Polímeros Molecularmente Impressos , Polímeros , Ratos , Extração em Fase Sólida
11.
J Agric Food Chem ; 66(3): 653-660, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29260546

RESUMO

In this work, a modified pretreatment method using magnetic molecularly imprinted polymers (MMIPs) was successfully applied to study the metabolites of an important botanical with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The MMIPs for glucoside-specific adsorption was used to identify metabolites of Pulsatilla chinensis in rat feces. Polymers were prepared by using Fe3O4 nanoparticles as the supporting matrix, d-glucose as fragment template, and dopamine as the functional monomer and cross-linker. Results showed that MMIPs exhibited excellent extraction performance, large adsorption capacity (5.65 mg/g), fast kinetics (60 min), and magnetic separation. Furthermore, the MMIPs coupled with UPLC-Q-TOF-MS were successfully utilized for the identification of 17 compounds including 15 metabolites from the Pulsatilla saponin metabolic pool. This study provides a reliable protocol for the separation and identification of saponin metabolites in a complex biological sample, including those from herbal medicines.


Assuntos
Fezes/química , Nanopartículas de Magnetita/química , Polímeros/química , Pulsatilla/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Extração em Fase Sólida/métodos , Animais , Cromatografia Líquida de Alta Pressão , Indóis/química , Magnetismo , Espectrometria de Massas , Impressão Molecular , Polímeros/síntese química , Pulsatilla/química , Ratos , Saponinas/metabolismo , Extração em Fase Sólida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA