Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(14): e202216188, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36722433

RESUMO

Due to non-specific strong nano-bio interactions, it is difficult for nanocarriers with permanent rough surface to cross multiple biological barriers to realize efficient drug delivery. Herein, a camouflaged virus-like-nanocarrier with a transformable rough surface is reported, which is composed by an interior virus-like mesoporous SiO2 nanoparticle with a rough surface (vSiO2 ) and an exterior acid-responsive polymer. Under normal physiological pH condition, the spikes on vSiO2 are hidden by the polymer shell, and the non-specific strong nano-bio interactions are effectively inhibited. While in the acidic tumor microenvironment, the nanocarrier sheds the polymer camouflage to re-expose its rough surface. So, the retention ability and endocytosis efficiency of the nanocarrier are great improved. Owing to it's the dynamically variable rough surface, the rationally designed nanocarrier exhibits extended blood-circulation-time and enhanced tumor accumulation.


Assuntos
Portadores de Fármacos , Nanopartículas , Dióxido de Silício , Sistemas de Liberação de Medicamentos , Polímeros , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
2.
Anal Chem ; 88(23): 11647-11653, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934126

RESUMO

A simple and novel method for evaluating antioxidants in complex biological fluids has been developed based on the interaction of dye-labeled single-strand DNA (ssDNA) and polydopamine (PDA). Due to the interaction between ssDNA and PDA, the fluorescence of dye-labeled ssDNA (e.g., FITC-ssDNA, as donor) can be quenched by PDA (as acceptor) to the fluorescence "off" state through Förster resonance energy transfer (FRET). However, in the presence of various antioxidants, such as glutathione (GSH), ascorbic acid (AA), cysteine (Cys), and homocysteine (Hcys), the spontaneous oxidative polymerization reaction from DA to PDA would be blocked, resulting in the freedom of FITC-ssDNA and leading to the fluorescence "on" state. The sensing system shows great sensitivity for the monitoring of antioxidants in a fluorescent "turn on" format. The new strategy also exhibits great selectivity and is free from the interferences of amino acids, metal ions and the biological species commonly existing in brain systems. Moreover, by combining the microdialysis technique, the present method has been successfully applied to monitor the dynamic changes of the striatum antioxidants in rat cerebrospinal microdialysates during the normal/ischemia/reperfusion process. This work establishes an effective platform for in vivo monitoring antioxidants in cerebral ischemia model, and promises new opportunities for the research of brain chemistry, neuroprotection, physiological, and pathological events.


Assuntos
Antioxidantes/análise , Córtex Cerebral/química , DNA/química , Corantes Fluorescentes/química , Indóis/química , Polímeros/química , Animais , Ácido Ascórbico/análise , Isquemia Encefálica , Cisteína/análise , Glutationa/análise , Homocisteína/análise , Ratos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA