Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Sci Technol ; 58(2): 1010-1021, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934921

RESUMO

Despite the increasing prevalence of atmospheric nanoplastics (NPs), there remains limited research on their phytotoxicity, foliar absorption, and translocation in plants. In this study, we aimed to fill this knowledge gap by investigating the physiological effects of tomato leaves exposed to differently charged NPs and foliar absorption and translocation of NPs. We found that positively charged NPs caused more pronounced physiological effects, including growth inhibition, increased antioxidant enzyme activity, and altered gene expression and metabolite composition and even significantly changed the structure and composition of the phyllosphere microbial community. Also, differently charged NPs exhibited differential foliar absorption and translocation, with the positively charged NPs penetrating more into the leaves and dispersing uniformly within the mesophyll cells. Additionally, NPs absorbed by the leaves were able to translocate to the roots. These findings provide important insights into the interactions between atmospheric NPs and crop plants and demonstrate that NPs' accumulation in crops could negatively impact agricultural production and food safety.


Assuntos
Antioxidantes , Microplásticos
2.
Environ Sci Technol ; 57(24): 9005-9017, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37289192

RESUMO

Ocean warming (OW) caused by anthropogenic activities threatens ocean ecosystems. Moreover, microplastic (MP) pollution in the global ocean is also increasing. However, the combined effects of OW and MPs on marine phytoplankton are unclear. Synechococcus sp., the most ubiquitous autotrophic cyanobacterium, was used to evaluate the response to OW + MPs under two warming scenarios (28 and 32 °C compared to 24 °C). The enhancement of the cell growth rate and carbon fixation under OW were weakened by MP exposure. Specifically, OW + MPs reduced carbon fixation by 10.9 and 15.4% at 28 and 32 °C, respectively. In addition, reduction in photosynthesis pigment contents of Synechococcus sp. under OW was intensified under OW + MPs, supporting the lower growth rate and carbon fixation under OW + MPs. Transcriptome plasticity (the evolutionary and adaptive potential of gene expression in response to changing environments) enabled Synechococcus sp. to develop a warming-adaptive transcriptional profile (downregulation of photosynthesis and CO2 fixation) under OW. Nevertheless, the downregulation of photosynthesis and CO2 fixation were alleviated under OW + MPs to increase responsiveness to the adverse effect. Due to the high abundances of Synechococcus sp. and its contributions to primary production, these findings are important for understanding the effects of MPs on carbon fixation and ocean carbon fluxes under global warming.


Assuntos
Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Plásticos , Microplásticos , Ecossistema , Dióxido de Carbono , Oceanos e Mares
3.
J Hazard Mater ; 472: 134488, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703685

RESUMO

Bioelectrochemical systems (BES) offer significant potential for treating refractory waste and recovering bioenergy. However, their ability to mitigate microplastic pollution in wastewater remains unexplored. This study showed that BES facilitated the treatment of polyethylene (PE), polyvinyl chloride (PVC), and Mix (PE+PVC) microplastic wastewater and the methane recovery (40.61%, 20.02%, 21.19%, respectively). The lactate dehydrogenase (LDH), adenosine triphosphate (ATP), cytochrome c, and nicotinamide adenine dinucleotide (NADH/NAD+) ratios were elevated with electrical stimulation. Moreover, the applied voltage improved the polysaccharides content of the extracellular polymeric substances (EPS) in the PE-BES but decreased in PVC-BES, while the proteins showed the opposite trend. Metatranscriptomic sequencing showed that the abundance of fermentation bacteria, acetogens, electrogens, and methanogens was greatly enhanced by applying voltage, especially at the anode. Methane metabolism was dominated by the acetoclastic methanogenic pathway, with the applied voltage promoting the enrichment of Methanothrix, resulting in the direct conversion of acetate to acetyl-CoA via acetate-CoA ligase (EC: 6.2.1.1), and increased metabolic activity in the anode. Moreover, applied voltage greatly boosted the function genes expression level related to energy metabolism, tricarboxylic acid (TCA) cycle, electron transport, and transporters on the anode biofilm. Overall, these results demonstrate that BES can mitigate microplastic pollution during wastewater treatment.


Assuntos
Biofilmes , Metano , Microplásticos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Metano/metabolismo , Anaerobiose , Poluentes Químicos da Água/metabolismo , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas , Polietileno/metabolismo , Polietileno/química
4.
Environ Pollut ; 359: 124753, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153540

RESUMO

The presence of mixed microplastics (MPs) in anaerobic wastewater treatment processes has been shown to impede fermentation performance by suppressing microbial activity. Microbial electrosynthesis (MES), with its extensive potential, offers a promising solution for refractory substances management and methane recovery, achieved through the enhancement of microbial metabolism and interspecies electron transfer. This study, therefore, delves into the functional impacts and the microbial response to MES in the remediation of wastewater contaminated with mixed-MPs. Results indicated that mixed-MPs could inhibit methane production (-52.38%) and substance removal (-26.59%), and MES could effectively mitigate this inhibitory effect (-22.86%, -19.01%). Concurrently, MES also boosts enzymatic activities pivotal for electron transfer, such as cytochrome c and nicotinamide adenine dinucleotide (NADH), as well as those linked to energy metabolism like adenosine triphosphate (ATP). Furthermore, MES bolsters microbial resistance to mixed-MPs, as evidenced by an increase in extracellular polymeric substances (EPS), albeit with a minor rise in reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release. Correspondingly, electric stimulation promoted the enrichment of functional microorganisms associated with fermentation, acetate production, electrogenesis, and methanogenesis, and stimulated elevated expression levels of genes related to methane metabolism. Notably, the Methanothrix-mediated acetoclastic pathway emerges as the predominant methanogenic route, succeeded by the Methanobacterium-driven hydrogenotrophic pathway. Lastly, the study underscores the supportive role of applied voltage and carriers in energy metabolism and substance transport, which are associated with methanogenesis. Overall, MES demonstrates efficacy in mitigating the biotoxicity induced by mixed-MPs exposure and in enhancing anaerobic wastewater treatment and methane recovery.


Assuntos
Metano , Microplásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano/metabolismo , Estimulação Elétrica , Poluentes Químicos da Água/metabolismo
5.
Water Res ; 251: 121167, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301404

RESUMO

Microplastic contamination has become increasingly aggravated in coastal environments, further affecting biogeochemical processes involved with microbial community shifts. As a key biogeochemical process mainly driven by microbiota in coastal wetland sediments, litter decomposition contributes greatly to the global greenhouse gas (GHG) budget. However, under microplastic pollution, the relationship between microbial alterations and GHG emissions during litter decomposition in coastal wetlands remains largely unknown. Here, we explored the microbial mechanism by which polyethylene microplastic (PE-MP) influenced greenhouse gas (i.e., CH4, CO2 and N2O) emissions during litter decomposition in coastal sediments through a 75-day microcosm experiment. During litter decomposition, PE-MP exposure significantly decreased cumulative CH4 and CO2 emissions by 41.07% and 25.79%, respectively. However, there was no significant change in cumulative N2O emissions under PE-MP exposure. The bacterial, archaeal, and fungal communities in sediments exhibited varied responses to PE-MP exposure over time, as reflected by the altered structure and changed functional groups of the microbiota. The altered microbial functional groups ascribed to PE-MP exposure and sediment property changes might contribute to suppressing CH4 and CO2 emissions during litter decomposition. This study yielded valuable information regarding the effects of PE-MP on GHG emissions during litter decomposition in coastal wetland sediments.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Gases de Efeito Estufa/análise , Microplásticos , Plásticos , Polietileno , Dióxido de Carbono , Metano/análise , Óxido Nitroso/análise , Solo
6.
J Environ Manage ; 114: 202-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23219334

RESUMO

The present study was conducted to investigate the effectiveness of GA(3) and Tween-80 on enhancing the phytoremediation of Cd-B[a]P co-contaminated soils. Results showed that the addition of GA(3) and GA(3)-Tween-80 enhanced Tagetes patula growth by 14%-32% and 23%-55%, respectively, relative to the control group. However, under independent GA(3)-treated soils, Cd and B[a]P concentrations in the shoots of the plants decreased by 15%-33% and 15%-53%, respectively, compared with CK. By contrast, the shoot concentration and accumulation of Cd under GA(3)-Tween-80 treatment increased by 0.01-0.46 and 1.33-1.55 times, respectively, whereas those of B[a]P increased from 0.57 to 0.82, and 1.33 to 1.55 times, respectively, compared with those of the control. Optimal result for Cd phytoextraction was obtained under combined 5 mmol Tween-80 kg(-1) and 1 mmol GA(3) kg(-1) treatment, and the maximum removal rate of B[a]P was obtained after the application of 5 mmol Tween-80 kg(-1) and 5 mmol GA(3) kg(-1).


Assuntos
Benzopirenos/metabolismo , Cádmio/metabolismo , Polissorbatos/farmacologia , Tagetes/efeitos dos fármacos , Tagetes/metabolismo , Biodegradação Ambiental , Estudos de Viabilidade , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Poluentes do Solo/metabolismo , Tensoativos/farmacologia , Tagetes/crescimento & desenvolvimento
7.
J Hazard Mater ; 443(Pt B): 130372, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444066

RESUMO

Considering the stability and economy of immobilized enzymes, this study prepared co-modified biochar immobilized laccase product named Fe3O4@NaBC@GA@LC via orthogonal experimental design and explored its possibility of remediating polycyclic aromatic hydrocarbons (PAHs) contaminated soil in steel plants. Compared with the free laccase treatment, the relative activity of Fe3O4@NaBC@GA@LC remained 60 % after 50 days of incubation at room temperature. The relative activity of Fe3O4@NaBC@GA@LC could still retain nearly 80 % after five reuses. In the process of simulating the PAHs-contaminated site treatment experiment in Hangzhou Iron and steel plant, immobilized laccase exhibited efficient adsorption and degradation performances and even the removal rate of 5-ring PAHs reached more than 90 % in 40 days, resulting in improving urease activity and dehydrogenase in the soil and promoted the growth of a PAH degrading bacteria (Massilia). Our results further explained the efficient degradation effects of Fe3O4@NaBC@GA@LC on PAHs, which make it a promising candidate for PAHs-contaminated soil remediation.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Lacase , Bactérias , Solo , Aço
8.
Environ Int ; 158: 106922, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628252

RESUMO

The safety of microplastics (MPs) and associated health effects has been one of the major concerns worldwide. However, the role of photoaging toward the risk of MPs in water ecosystems remains inconclusive yet. In this study, the size of polyamide (PA, ∼32.50 µm) MPs was obviously decreased after photoaging in water containing fulvic acid (FA) and humic acid (HA) (∼19.75 and âˆ¼24.30 µm, respectively). Nanoplastics were formed (4.65% and 2.03%, respectively) and hydrophilia and colloidal stability was improved due to the formation of oxygen-containing functional groups. FA-aged PA exhibited higher inhibition on body length and weight of developing zebrafish than HA-aged and pristine PA. Photoaged MPs in intestine were more difficult to be depurated by zebrafish, leading to the disappearance of intestinal folding, shedding of more enterocytes, and emaciation of intestinal microvilli. Dietary lipid digestion in larvae was inhibited by aged PA due to oxidative stress-triggered lipid peroxidation and inhibition of lipase activities and bile acids secretion. Exposure of photoaged MPs down-regulated genes (cd36, dgat1a, dgat2, mttp, etc.) associated with triglyceride resynthesis and transportation, resulting in lipid maladsorption and growth inhibition. Our findings highlight the potential negative effects of environmentally aged MPs on diet digestion and nutrient assimilation in fish.


Assuntos
Envelhecimento da Pele , Poluentes Químicos da Água , Animais , Ecossistema , Intestinos/química , Lipídeos , Microplásticos , Nylons/toxicidade , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
9.
J Hazard Mater ; 423(Pt B): 127241, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844359

RESUMO

At present, the uptake and accumulation of nanoplastics by plants have raised particular concerns. However, molecular mechanisms underlying nanoplastic phytotoxicity are still vague and insufficient. To address this scientific gap, we analyzed the transcriptome response of hydroponically grown wheat (Triticum aestivum L.) to polystyrene nanoplastics (PSNPs) (100 nm) by integrating the differentially expressed gene analysis (DEGA) and the weighted gene correlation network analysis (WGCNA). PSNPs could significantly shape the gene expression patterns of wheat in a tissue-specific manner. Four candidate modules and corresponding hub genes associated with plant traits were identified using WGCNA. PSNPs significantly altered carbon metabolism, amino acid biosynthesis, mitogen-activated protein kinase (MAPK) signaling pathway-plant, plant hormone signal transduction, and plant-pathogen interaction Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In addition, some Gene Ontology (GO) terms associated with the metal ion transport were further screened. These findings shed new light on the phytotoxic mechanism and environmental implication behind the interaction of nanoplastics and crop plants, and advance our understanding of the potential adverse effect induced by the presence of nanoplastics in agricultural systems.


Assuntos
Microplásticos , Triticum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Poliestirenos/toxicidade , Transcriptoma , Triticum/genética
10.
Environ Int ; 102: 177-189, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28318601

RESUMO

With rapid development of nanotechnology and nanomaterials, nanosafety has attracted wide attention in all fields related to nanotechnology. As well known, a grand challenge in nanomaterial applications is their biocompatibility. It is urgent to explore effective strategies to control the unintentional effects. Although many novel methods for the synthesis of biocompatible and biodegradable nanomaterials are reported, the control strategy of nanotoxicity remains in its infancy. It is urgent to review the archived strategies for improving nanomaterial biocompatibility to clarify what we have done and where we should be. In this review, the achievements and challenges in nanomaterial structure/surface modifications and size/shape controls were analyzed. Moreover, the chemical and biological strategies to make nanomaterial more biocompatible and biodegradable were compared. Finally, the concerns that have not been studied well were prospected, involving unintended releases, life-cycle, occupational exposure and methodology.


Assuntos
Materiais Biocompatíveis/análise , Nanoestruturas/análise , Teste de Materiais , Exposição Ocupacional
11.
Biosens Bioelectron ; 85: 135-141, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27162144

RESUMO

The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Carbono/química , Recuperação e Remediação Ambiental/métodos , Petróleo/metabolismo , Poluentes do Solo/metabolismo , Fibra de Carbono , Eletricidade , Eletrodos , Petróleo/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/isolamento & purificação
12.
J Environ Sci (China) ; 16(5): 816-20, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15559819

RESUMO

To exploit peashrub resources in Ordos as fodders, it is very crucial to realize industrial production of cheap cellulase of high activity by optimizing culture technology, especially culture substrate. In this study, a new prescription experiment based on uniform design ideal was invented and successfully applied in the solid fermentation of Trichoderma koningii F244, which was performed with two different temperature degrees. The activities of FPA, cotton lyase, CMCase and beta-glucosidase were assayed and then mathematical models of enzymatic activities, which were figured out by Unconstraint Mathematical Programming, were developed by Multivariate Regression Program of SPSS10.0. Enzymatic activities of optimized substrate prescriptions corresponding to mathematical models were forecasted to determine an ideal substrate prescription. It is revealed that in solid fermentation, Tween80 has negative effect on cellulase production. Furthermore, the ideal prescription for cellulase complex production by Trichoderma koningii F244 was straw powder 16.9%, wheat bran 26.5%, (NH4)2SO4 9.5% and water 47.1%, whose corresponding cellulase activity was expected to be at the same high level with that of Trichoderma reesei Q9414 on its own recommended substrate. Especially, goats mainly fed on peashrub tissues mixed with cellulase complex of this prescription and culture technology, got an incremental ratio of 0.3 kg/d, which brought a very promising feeding prospect for local peashrub resource. By populization of this cellulase complex, it can integrate living standard, economic construction of local residents into vegetational restoration tightly and thus this paper will be very meaningful to be use for reference for western China like Ordos to realize its sustainable development of economy, society and environment.


Assuntos
Celulase/biossíntese , Proteínas de Plantas/metabolismo , Trichoderma/metabolismo , Agricultura/métodos , Ração Animal/análise , Animais , Peso Corporal , China , Fermentação , Cabras/fisiologia , Modelos Teóricos , Polissorbatos , Análise de Regressão , Temperatura
13.
Water Res ; 46(17): 5777-5787, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22939222

RESUMO

Single chambered air-cathode microbial fuel cells (MFCs) are promising to be scaled up as sustainable wastewater treatment systems. However, the current air-cathode made by brushing noble metal catalyst and Nafion binder onto carbon matrix becomes one of the biggest bottlenecks for the further development of MFCs due to its high cost, huge labor-consuming and less accuracy. A novel structure of air-cathode was constructed here by rolling activated carbon (AC) and polytetrafluoroethylene (PTFE) as catalyst layer to enhance the reproducibility and improve the performance by an optimized three-phase interface (TPI). Air-cathodes with AC/PTFE ratios of 3, 5, 6, 8 and 11 in the catalyst layer were prepared, and the physical and electrochemical techniques were employed to investigate their surface microstructure and electrochemical characteristics. Uniform cross-linked ropiness networks were observed from the catalyst layer of all the cathodes and increased as the AC/PTFE ratio decreased, while the exchange currents were positively related to this ratio. Maximum power densities (MPDs) decreased as follows: AC/PTFE = 6 (802 mW m(-2) at 3.4 A m(-2)), 5 (704 mW m(-2) at 2.2 mA m(-2)), 8 (647 mW m(-2) at 2.2 A m(-2)), 3 (597 mW m(-2) at 2.1 A m(-2)) and 11 (584 mW m(-2) at 2.0 mA m(-2)), which was due to the changes of both the capacitance characteristics and conductivities according to the electrochemical impedance spectrum (EIS) analysis. This study demonstrated that inexpensive, highly reproducible, high performance and scalable air-cathode can be produced by rolling method without using noble metal and expensive binder.


Assuntos
Fontes de Energia Bioelétrica , Carvão Vegetal/química , Politetrafluoretileno/química , Catálise , Eletrodos
14.
Int J Phytoremediation ; 13(8): 818-33, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21972521

RESUMO

A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.


Assuntos
Cádmio/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Solanum nigrum/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Cádmio/análise , Quelantes/farmacologia , Cisteína/farmacologia , Ácido Edético/farmacologia , Poluição Ambiental , Flores/química , Flores/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Polissorbatos/farmacologia , Ácido Salicílico/farmacologia , Solo/análise , Poluentes do Solo/análise , Solanum nigrum/efeitos dos fármacos , Solanum nigrum/crescimento & desenvolvimento , Tensoativos/farmacologia
15.
Environ Toxicol ; 20(2): 179-87, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15793823

RESUMO

The ecotoxicological effects of aluminum (Al)-based coagulants are of concern because of their wide-ranging applications in wastewater treatment and water purification. As important Al-based coagulants, AlCl(3) and PAC (polyaluminum-chloride) were selected as examples to examine the toxic effects on representative vegetables including the cabbage Brassica chinensis and the radish Raphanus sativus over a range of exposure concentrations in neutral (pH 7.00) and acidic (pH 4.00) conditions, using seed germination and root elongation in the early-growth stage as indicators of toxicity. The results showed that root elongation of the two vegetables was a more sensitive indicator than was seed germination for evaluating the toxicity of Al. As a single influencing factor, H(+) had no significant direct effects on root elongation of Brassica chinensis and Raphanus sativus under the experimental conditions. The toxicity of Al played the main role in inhibiting root elongation and seed germination and was strongly related to changes in pH. There was a markedly positive relationship between the inhibitory rate of root elongation, seed germination, and the concentration of Al at pH 4.00 (p < 0.01). The toxic effect of AlCl(3) on Brassica chinensis was less with a neutral pH than at pH 4.00, but Raphanus sativus was more susceptible to AlCl(3) toxicity at a neutral pH than at pH 4.00. Both Raphanus sativus and Brassica chinensis had a more toxic response to a low concentration (<64 mg . L(-1)) of PAC in a neutral condition than in an acidic condition. Undoubtedly, the Al toxicity caused by Al-based coagulants at a neutral pH is relevant when treatment solids are used in agriculture.


Assuntos
Compostos de Alumínio/toxicidade , Hidróxido de Alumínio/toxicidade , Alumínio/toxicidade , Cloretos/toxicidade , Eliminação de Resíduos Líquidos/métodos , Cloreto de Alumínio , Brassica/crescimento & desenvolvimento , Germinação , Concentração de Íons de Hidrogênio , Raízes de Plantas/crescimento & desenvolvimento , Polímeros , Raphanus/crescimento & desenvolvimento , Sementes , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA