Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 478(2): 241-247, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35781650

RESUMO

Curcumin (CUR) is an extract of Curcuma longa Linn., which has various pharmacological activities. The instability, low water solubility and bioavailability of CUR greatly limit its clinical application. This work prepared Pluronic F127-liposome-encapsulated curcumin (CUR-LIP-F127) and explored its functional role in wound healing. Liposome-encapsulated curcumin (CUR-LIP) and CUR-LIP-F127 were prepared. Human keratinocyte cell line (HaCaT) was treated with CUR, Pluronic F127-liposome (LIP-F127) and CUR-LIP-F127, or combined with ML385 (Nrf2 inhibitor). The expression of mRNAs and proteins was detected by quantitative real-time PCR and western blotting. MTT and wound healing assays were performed to detect cell viability and migration. CUR, LIP-F127 and CUR-LIP-F127 all had no influence on cell viability of HaCaT cells. CUR-LIP-F127 treatment significantly accelerated cell migration and enhanced the expression of nuclear factor erythroid-related factor 2 (Nrf2) and kelch-like erythroid cell-derived protein 1 (Keap1) in HaCaT cells with respect to CUR or LIP-F127 treatment. ML385 treatment impaired CUR-LIP-F127-mediated promotion of migration and up-regulation of Nrf2 and Keap1 in HaCaT cells. This work demonstrated that CUR-LIP-F127 activated Nrf2/Keap1 signaling pathway to promote migration of HaCaT cells, suggesting that CUR-LIP-F127 may contribute to wound healing.


Assuntos
Curcumina , Humanos , Curcumina/farmacologia , Lipossomos , Poloxâmero , Fator 2 Relacionado a NF-E2 , Células HaCaT , Proteína 1 Associada a ECH Semelhante a Kelch , Transdução de Sinais
2.
Angew Chem Int Ed Engl ; 62(9): e202217408, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36594796

RESUMO

Tumor enzyme-responsive charge-reversal carriers can induce efficient transcytosis and lead to efficient tumor infiltration and potent anticancer efficacy. However, the correlations of molecular structure with charge-reversal property, tumor penetration, and drug delivery efficiency are unknown. Herein, aminopeptidase N (APN)-responsive conjugates were synthesized to investigate these correlations. We found that the monomeric unit structure and the polymer chain structure determined the enzymatic hydrolysis and charge-reversal rates, and accordingly, the transcytosis and tumor accumulation and penetration of the APN-responsive conjugates. The conjugate with moderate APN responsiveness balanced the in vitro transcytosis and in vivo overall drug delivery process and achieved the best tumor delivery efficiency, giving potent antitumor efficacy. This work provides new insight into the design of tumor enzyme-responsive charge-reversal nanomedicines for efficient cancer drug delivery.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antígenos CD13/uso terapêutico , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Polímeros/química , Nanopartículas/química , Linhagem Celular Tumoral , Doxorrubicina/química
3.
Bioconjug Chem ; 33(11): 2132-2142, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36332151

RESUMO

Active transcytosis has recently sparked great interest in drug delivery as a novel route for tumor extravasation and infiltration. However, the rational design of transcytosis-inducing nanomedicines remains challenging. We recently demonstrated that the γ-glutamyl transpeptidase (GGT)-responsive polymer cationization induced efficient adsorption-mediated transcytosis (AMT). However, it remains unclear how the nanomedicines' physicochemical properties influence the GGT-responsive cationization and induced transcytosis behaviors. Herein, through a combination of experimental techniques and molecular dynamics (MD) simulations, we find that the random copolymers with high hydrophobic monomers tend to form compact structures accessible to the catalytic site of GGT, leading to a fast cationization and thus high transcytosis efficiency, while the homopolymers of the hydrophilic GGT-sensitive monomers have elongated structures unable to enter the active site and thus exhibit poor GGT sensitivity. As a result, the more hydrophobic polymer-drug conjugates with high camptothecin contents exhibit higher GGT-responsive activity, which in turn leads to faster cationization and cellular internalization, enhanced tumor infiltration, and more potent antitumor activity. These findings indicate the hydrophobicity is a main parameter determining the GGT catalytic activity and transcytosis efficiency of the GGT-activatable co(homo)polymers, providing guidelines for the rational design of GGT-induced charge reversal carriers for transcytotic nanomedicines.


Assuntos
Neoplasias , gama-Glutamiltransferase , Humanos , gama-Glutamiltransferase/metabolismo , Polímeros , Transcitose , Interações Hidrofóbicas e Hidrofílicas
4.
Int J Clin Pract ; 2022: 7770214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685568

RESUMO

Background: Percutaneous kyphoplasty (PKP) is an effective minimally invasive technique for the treatment of osteoporotic vertebral fracture (OVF) in recent years. This study focuses on the analysis of PKP surgery and anesthesia in osteoporotic vertebral facture patients over 90 years old with the concept of "enhanced recovery after surgery." Methods: This study reviewed 239 patients who were diagnosed with OVF retrospectively between October 2015 and June 2019. According to the method of anesthesia, these patients were divided into Group A (n = 125) and Group B (n = 114). According to the pedicle puncture approach, these patients were divided into Group C (n = 102) and Group D (n = 137). The anterior vertebral height (AVH) and local kyphosis angle (LKA) were used to evaluate the degree of vertebral damage and restoration. The visual analogue scale (VAS) and the Oswestry Disability Index (ODI) scores were used for assessing functional outcomes. Some parameters were used to assess the perioperative conditions such as operation time, amount of bone cement perfusion, intraoperative fluoroscopy times, anesthesia recovery time, time out of the bed, hospital stay, hospitalization cost, and complications. Results: The visual analogue scale (VAS), Oswestry Disability Index (ODI), anterior vertebral height (AVH), and local kyphosis angle (LKA) 1 day, 1 year after surgery, and at the last follow-up all showed significant improvement (P < 0.05) in comparison with those before surgery both in Groups A and B and Groups C and D. The ODI 1 day after surgery was significantly better in Group B than Group A (P < 0.05). Compared with Group B, Group A required longer time of anesthesia, operation time, anesthesia recovery time, time to get out of bed, and length of hospital stay and more hospitalization costs (P < 0.05). Group D required longer operation time, longer time to get out of bed, more bone cement volume, fluoroscopy time, and more operation hospitalization costs compared with Group C (P < 0.05). Conclusion: We recommend unilateral puncture under local anesthesia for OVF in the patients aged over 90 from the perspective of rapid recovery.


Assuntos
Anestesia , Fraturas por Compressão , Cifoplastia , Cifose , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Idoso , Idoso de 80 Anos ou mais , Cimentos Ósseos/uso terapêutico , Fraturas por Compressão/cirurgia , Humanos , Cifoplastia/métodos , Cifose/cirurgia , Fraturas por Osteoporose/cirurgia , Punções , Estudos Retrospectivos , Fraturas da Coluna Vertebral/cirurgia
5.
Ecotoxicol Environ Saf ; 231: 113196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35051768

RESUMO

BACKGROUND: Researchers have reported that chromium (Cr) exposure may be associated with metabolism of glucose and lipids in residents living in a long-term Cr polluted area. Previous statistical analysis is mainly focused on individual chromium exposure. Furtherly, we aim to investigated the independent, combined, and interaction effects of the co-exposure of urine Cr (UCr) with cadmium (UCd), lead (UPb) and manganese (UMn) on body mass index (BMI), waist circumference, and the risk of overweight and abdominal obesity. METHOD: We enrolled 1187 participants from annual surveys between 2017 and 2019. Heavy metal concentrations in urine were standardized using covariate-adjusted urine creatinine levels. Multiple linear/logistic regression models were applied to measure the single effect of urine heavy metal concentration on the outcomes. The quantile-based g-computation (g-comp) model was used to evaluate the combined effect of metal mixture on the outcomes and to compare the contribution of each metal. Both additive and multiplicative interactions were measured for UCr with UCd, UPb, UMn on the outcomes. Analysis was performed on the overall population and stratified by smoking habit. RESULTS: For the overall study population, UCr was positively associated with BMI (p trend = 0.023) and waist circumference (p trend = 0.018). For smoking participants, the g-comp model demonstrated that the metal mixture was negatively associated with BMI, with UCr and UCd contributing the most in the positive and negative direction. A negative additive interaction was observed between UCr and UCd on BMI and abdominal obesity. We did not observe a significant interaction effect of UCr with UPb or UMn. CONCLUSION: Our study indicated that Cr and Cd exposure may be associated with BMI and waist circumference, with combined and interaction effects of the heavy metals noted. Further epidemiological and experimental researches could simultaneously consider single and complex mixed exposure to verify the findings and biological mechanisms.


Assuntos
Cádmio , Metais Pesados , Adulto , Cádmio/toxicidade , Cromo/toxicidade , Ligas de Cromo , Exposição Ambiental/análise , Humanos , Obesidade/induzido quimicamente
6.
Biomacromolecules ; 22(12): 5139-5150, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34775750

RESUMO

The adsorption-mediated transcytosis (AMT) induced by the electrostatic interaction between the positively charged surface of carriers and negatively charged cell membrane is a new paradigm enabling nanomedicine's tumor extravasation and infiltration. However, little is known about the correlation between the carrier's charge density and its AMT-induced tumor infiltration efficiency. Herein, we investigate the effect of the cationic polymer's charge on the AMT-induced tumor penetration ability using in vitro multilayer tumor spheroids (MTSs). A cationic polymer, polyethylenimine (PEI), is amidized with acetic anhydride to obtain acetylated PEIs (AcPEIs) with different cationic charge densities. As the amidization ratio increases, the AcPEIs' cytotoxicity, zeta potential, and cell-binding affinity significantly decrease. Notably, not only does the weak cell binding (AcPEIs with high acetylation degrees) lead to slow endocytosis and inefficient transcytosis, so does the strong cell-binding PEI. The PEI with 24% acetylation (AcPEI24%) is found to have the highest transcytosis efficiency because its balanced cell-binding affinity triggers fast adsorption-mediated endocytosis. The subsequent Golgi apparatus/endoplasmic reticulum-mediated exocytosis via extracellular vesicles leads to highly effective transcellular delivery and tumor penetration in MTSs. Therefore, the drug carrier's surface cationic charge density critically influences its AMT-induced tumor penetration efficiency. This study provides mechanistic insights into the design of drug-delivery systems with active transcytosis for improved tumor penetration and enhanced therapeutic efficiency.


Assuntos
Sistemas de Liberação de Medicamentos , Polietilenoimina , Cátions , Eletricidade Estática , Transcitose
7.
Med Sci Monit ; 26: e920578, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31932574

RESUMO

BACKGROUND This study aimed to evaluate the efficacy of a porous polyoxymethylene thermoplastic regulator combined with a three-dimensional (3D) printed template to guide pedicle needle insertion in patients undergoing percutaneous pedicle screw fixation (PPSF) for thoracolumbar fracture. MATERIAL AND METHODS Forty patients were randomly divided into group A, treated using a porous polyoxymethylene thermoplastic regulator combined with a 3D printed template, and group B, who underwent conventional PPSF. Data recorded included the number of pedicle screws successfully inserted on the first attempt, the number of attempts, the time to successful needle insertion, the total time of fluoroscopy, and the duration of surgery. The Visual Analogue Scale (VAS) and the Oswestry Disability Index (ODI) scores one day before surgery, and at day 1, day 7, month 1, and month 3 after surgery were recorded. The postoperative vertebral posterior kyphotic angle (KA) and the rate of change of KA were recorded. RESULTS Group A had a significantly increased total number of successful first insertions compared with group BV (P<0.05). Postoperative VAS and ODI scores of patients in both groups were significantly lower than before surgery (P<0.05), with no significant difference between the two groups at postoperative month 1 and month 3 (P>0.05). The postoperative vertebral posterior KA decreased significantly in both groups after surgery, with no significant difference between the two groups (P>0.05). CONCLUSIONS The use of a porous polyoxymethylene thermoplastic regulator combined with a 3D printed template may improve the success of pedicle insertion in patients undergoing PPSF.


Assuntos
Fixação Interna de Fraturas , Vértebras Lombares/cirurgia , Parafusos Pediculares , Plásticos/uso terapêutico , Impressão Tridimensional , Resinas Sintéticas/uso terapêutico , Vértebras Torácicas/cirurgia , Feminino , Humanos , Cuidados Intraoperatórios , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Cuidados Pós-Operatórios , Vértebras Torácicas/diagnóstico por imagem
8.
Bioconjug Chem ; 28(11): 2794-2803, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972742

RESUMO

Hepatocellular carcinoma (HCC) is a common worldwide cancer that is rising rapidly in incidence. MRI is a powerful noninvasive imaging modality for HCC detection, but lack of specific contrast agents limits visualization of small tumors. EGFR is frequently overexpressed in HCC and is a promising target. Peptides have fast binding kinetics, short circulatory half-life, low imaging background, high vascular permeability, and enhanced tissue diffusion for deep tumor penetration. We demonstrate a peptide specific for EGFR labeled with an ultrasmall paramagnetic iron oxide (UPIO) nanoparticle with 3.5 nm dimensions to target HCC using T1-weighted MRI. We modified the hydrophobic core with oleic acid and capped with PEGylated phospholipids DSPE-PEG and DSPE-PEG-Mal. The EGFR peptide is attached via thioether-mediated conjugation of a GGGSC linker to the maleimide-terminated phospholipids. On in vivo MR images of HCC xenograft tumors, we observed peak nanoprobe uptake at 2 h post-injection followed by a rapid return to baseline by ∼24 h. We measured significantly greater MR signal in tumor with the targeted nanoprobe versus scrambled peptide, blocked peptide, and Gadoteridol. Segmented regions on MR images support rapid renal clearance. No significant difference in animal weight, necropsy, hematology, and chemistry was found between treatment and control groups at one month post-injection. Our nanoprobe based on an EGFR specific peptide labeled with UPIO designed for high stability and biocompatibility showed rapid tumor uptake and systemic clearance to demonstrate safety and promise for clinical translation to detect early HCC.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Receptores ErbB/análise , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Peptídeos/química , Animais , Linhagem Celular Tumoral , Compostos Férricos/química , Humanos , Fígado/diagnóstico por imagem , Camundongos , Fosfatidiletanolaminas/química , Polietilenoglicóis/química
9.
Langmuir ; 33(38): 9866-9872, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28849937

RESUMO

One-dimensional (1D) hybrid nanofibers with surface-deposited gold nanoparticles (AuNPs) have been fabricated by self-assembly of rod-like tobacco mosaic virus (TMV) with mussel-inspired polymerization of dopamine and in situ reduction of gold ion, providing a method for sensing the endocytic pathway of nanomaterial.


Assuntos
Nanofibras , Ouro , Indóis , Nanopartículas Metálicas , Polímeros , Vírus do Mosaico do Tabaco
10.
J Control Release ; 371: 313-323, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823585

RESUMO

Poly(ethylene glycol) (PEG) is widely utilized as a hydrophilic coating to extend the circulation time and improve the tumor accumulation of polymeric micelles. Nonetheless, PEGylated micelles often activate complement proteins, leading to accelerated blood clearance and negatively impacting drug efficacy and safety. Here, we have crafted amphiphilic block copolymers that merge hydrophilic sulfoxide-containing polymers (psulfoxides) with the hydrophobic drug 7-ethyl-10-hydroxylcamptothecin (SN38) into drug-conjugate micelles. Our findings show that the specific variant, PMSEA-PSN38 micelles, remarkably reduce protein fouling, prolong blood circulation, and improve intratumoral accumulation, culminating in significantly increased anti-cancer efficacy compared with PEG-PSN38 counterpart. Additionally, PMSEA-PSN38 micelles effectively inhibit complement activation, mitigate leukocyte uptake, and attenuate hyperactivation of inflammatory cells, diminishing their ability to stimulate tumor metastasis and cause inflammation. As a result, PMSEA-PSN38 micelles show exceptional promise in the realm of anti-metastasis and significantly abate SN38-induced intestinal toxicity. This study underscores the promising role of psulfoxides as viable PEG substitutes in the design of polymeric micelles for efficacious anti-cancer drug delivery.


Assuntos
Irinotecano , Micelas , Pró-Fármacos , Animais , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Irinotecano/administração & dosagem , Irinotecano/farmacocinética , Linhagem Celular Tumoral , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Polímeros/química , Feminino , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Sulfóxidos , Camundongos , Intestinos/efeitos dos fármacos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Portadores de Fármacos/química
11.
Adv Mater ; 36(31): e2400894, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636448

RESUMO

Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Animais , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Humanos , Aderências Teciduais/prevenção & controle , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/prevenção & controle , Incrustação Biológica/prevenção & controle , Polímeros/química , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/prevenção & controle , Metástase Neoplásica/prevenção & controle , Adesão Celular/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia
12.
World Neurosurg ; 167: e1225-e1230, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089275

RESUMO

BACKGROUND: This study aims to compare the clinical efficacy of percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral asymmetric compression fracture (OVACF). METHODS: This study retrospectively reviewed the patients who were diagnosed with OVACF between September 2015 and July 2019. Forty-one patients received PVP surgery (group A), and 44 patients received PKP surgery (group B). The visual analog scale, Oswestry Disability Index, scoliosis angle (SA), height of long side, height of short side (HS), and lateral height difference (LHD) before operation and 3 days and 1 year after operation were compared between both groups. The operation time, fluoroscopic time, hospital stay, cement volume, and complications were also compared between both groups. RESULTS: The visual analog scale and Oswestry Disability Index differed significantly between the groups 1 year after operation (P < 0.05). Compared with the preoperative results, there were significant differences in SA, height of long side, HS, and LHD 3 days and 1 year after operation (P < 0.05). Compared with group A, group B showed significantly better in SA, HS, and LHD in group B 3 days and 1 year after operation (P < 0.05). More patients in group A suffered cement leakage and scoliosis than group B after operation (P < 0.05). CONCLUSIONS: In our study, PVP and PKP are both effective in the treatment of OVACF, but PKP surgery had better long-term clinical efficacy.


Assuntos
Fraturas por Compressão , Cifoplastia , Fraturas por Osteoporose , Escoliose , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Cifoplastia/métodos , Fraturas por Compressão/diagnóstico por imagem , Fraturas por Compressão/cirurgia , Fraturas por Compressão/complicações , Escoliose/complicações , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/cirurgia , Fraturas da Coluna Vertebral/complicações , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/cirurgia , Vertebroplastia/métodos , Resultado do Tratamento , Cimentos Ósseos/uso terapêutico
13.
J Control Release ; 348: 444-455, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691498

RESUMO

Cancer drug delivery systems often suffer from premature drug leakage during transportation and/or inefficient drug release within cancer cells. We present here a polymeric prodrug nanoassembly that addresses these problems simultaneously. This nanoassembly comprises a polymeric prodrug with novel trivalent phenylboronate moieties for drug conjugation via ether linkages, as well as ß-lapachone (Lapa). While the ether linkage enables nearly no drug release under physiological conditions, the Lapa molecules can induce the reactive oxygen species (ROS) burst specifically in cancer cells via NAD(P)H: quinone oxidoreductase-1 catalysis, which triggers the cleavage of the ether bonds and thus cascade amplification drug release in cancer cells. As a result, the nanoassemblies exhibit much higher cytotoxicity against cancer cells than normal cells, and also increased therapeutic efficacy and reduced side effects compared to the clinically used irinotecan. We anticipate that this strategy can be applied to other drug delivery platforms to enable more precise drug release.


Assuntos
Nanopartículas , Pró-Fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Éteres , Nanopartículas/química , Polímeros/química , Pró-Fármacos/química
14.
ACS Biomater Sci Eng ; 8(8): 3361-3376, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35819069

RESUMO

Rheumatoid arthritis (RA) is an inflammatory type of arthritis that causes joint pain and damage. The inflammatory cell infiltration (e.g., M1 macrophages), the poor O2 supply at the joint, and the excess reactive oxygen species (ROS)-induced oxidative injury are the main causes of RA. We herein report a polydopamine (PDA)-coated CeO2-dopped zeolitic imidazolate framework-8 (ZIF-8) nanocomposite CeO2-ZIF-8@PDA (denoted as CZP) that can synergistically treat RA. Under near-infrared (NIR) light irradiation, PDA efficiently scavenges ROS and results in an increased temperature in the inflamed area because of its good light-to-heat conversion efficiency. The rise of temperature serves to obliterate hyper-proliferative inflammatory cells accumulated in the diseased area while vastly promoting the collapse of the acidic-responsive skeleton of ZIF-8 to release the encapsulated CeO2. The released CeO2 exerts its catalase-like activity to relieve hypoxia by generating oxygen via the decomposition of H2O2 highly expressed in the inflammatory sites. Thus, the constructed CZP composite can treat RA through NIR-photothermal/ROS-scavenging/oxygen-enriched combinative therapy and show good regression of pro-inflammatory cytokines and hypoxia-inducible factor-1α (HIF-1α) in vitro and promising therapeutic effect on RA in rat models. The multimodal nano-platform reported herein is expected to shed light on the design of synergistic therapeutic nanomedicine for effective RA therapy.


Assuntos
Artrite Reumatoide , Zeolitas , Animais , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/terapia , Peróxido de Hidrogênio/efeitos adversos , Concentração de Íons de Hidrogênio , Indóis , Oxigênio/efeitos adversos , Polímeros , Ratos , Espécies Reativas de Oxigênio/efeitos adversos
15.
Adv Mater ; 34(16): e2109189, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35196415

RESUMO

Orally administrable anticancer nanomedicines are highly desirable due to their easy and repeatable administration, but are not yet feasible because the current nanomedicine cannot simultaneously overcome the strong mucus and villi barriers and thus have very low bioavailability (BA). Herein, this work presents the first polymeric micelle capable of fast mucus permeation and villi absorption and delivering paclitaxel (PTX) efficiently to tumors with therapeutic efficacy even better than intravenously administered polyethylene glycol based counterpart or free PTX. Poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA), a water-soluble polyzwitterion, is highly nonfouling to proteins and other biomacromolecules such as mucin but can weakly bind to phospholipids. Therefore, the micelle of its block copolymer with poly(ε-caprolactone) (OPDEA-PCL) can efficiently permeate through the viscous mucus and bind to villi, which triggers transcytosis-mediated transepithelial transport into blood circulation for tumor accumulation. The orally administered micelles deliver PTX to tumors, efficiently inhibiting the growth of HepG2 and patient-derived hepatocellular carcinoma xenografts and triple-negative breast tumors. These results demonstrate that OPDEA-based micelles may serve as an efficient oral nanomedicine for delivering other small molecules or even large molecules.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Micelas , Muco , Nanomedicina , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Polietilenoglicóis/química , Polímeros/química
16.
Adv Drug Deliv Rev ; 179: 114027, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34732344

RESUMO

Nanomedicines generally consisting of carrier materials with small fractions of active pharmaceutical ingredients (API) have long been used to improve the pharmacokinetics and biodistributions, augment the therapeutic efficacies and mitigate the side effects. Amphiphilizing hydrophobic/hydrophilic drugs to prodrugs capable of self-assembly into well-defined nanostructures has emerged as a facile approach to fabricating nanomedicines because this amphiphilized prodrug (APD) strategy presents many advantages, including minimized use of inert carrier materials, well-characterized prodrug structures, fixed and high drug loading contents, 100% loading efficiency, and burst-free but controlled drug release. This review comprehensively summarizes recent advances in APDs and their nanomedicines, from the rationale and the stimuli-responsive linker chemistry for on-demand drug release to their progress to the clinics, clinical performance of APDs, as well as the challenges and perspective on future development.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Preparações de Ação Retardada , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Enzimas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Peptídeos/química , Polímeros/química , Tensoativos/química , Raios Ultravioleta
17.
Adv Healthc Mater ; 10(13): e2100335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960139

RESUMO

Micro/nanomotors (MNMs) are miniature machines that can convert chemical or external energy into their own mechanical motions. In previous decades, significant efforts have been made to improve the performance of MNMs. For practical applications, the biodegradability of MNMs is an important aspect that must be considered, particularly in the biomedical field. In this review, recent progress in the biodegradability of MNMs and their potential applications are summarized. Different biodegradable materials, including metals and polymers, or other strategies for the fabrication of MNMs, are presented. Current challenges and future perspectives are also discussed.


Assuntos
Nanoestruturas , Nanotecnologia , Metais , Movimento (Física) , Polímeros
18.
J Control Release ; 321: 529-539, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32109513

RESUMO

Amphiphilic drug conjugates can self-assemble into nanovehicles for cancer drug delivery, but the key is to design stable yet intracellular labile drug linkers for drug retention during blood circulation but fast intracellular drug release. The conjugation of paclitaxel (PTX) is generally via the ester of its 2'-hydroxyl group, but the ester is either too stable to release PTX in the cytosol or so labile that hydrolyzes during circulation. Herein, we report a p-(boronic ester)benzyl-based tumor-specifically cleavable linker for preparing PTX-conjugate with polyethylene glycol (PEG, Mw = 5000 Da) (PEG-B-PTX). The amphiphilic PEG-B-PTX self-assembled into micelle with an average size of ~50 nm and a PTX loading content of 13.3 wt%. The PEG-B-PTX micelles were very stable at the normal physiological environment and thus circulated long in the blood compartment, but fast dissociated and released PTX in response to the elevated reactive­oxygen species (ROS) level in tumors. The conjugate micelles showed significantly improved antitumor efficiency in vitro and in vivo against human glioma and breast cancer cells, and reduced toxicity compared to the clinically used Taxol. Thus, the PTX-conjugate micelles were characteristic of well-characterized chemical structure and nanostructure, precise and reproducible drug loading efficiency (i.e., 100%) and fixed loading content, high PTX loading content due to PTX itself as part of the carrier, no burst drug release, and easy and reproducible fabrication of the micelles, which are all essential for clinical translation.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias , Polietilenoglicóis , Pró-Fármacos , Linhagem Celular Tumoral , Portadores de Fármacos , Humanos , Micelas , Neoplasias/tratamento farmacológico , Paclitaxel
19.
J Orthop Surg Res ; 15(1): 132, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264901

RESUMO

PURPOSE: To compare the effect of conventional pedicle screw (CPS) and cement-augmented pedicle screw instrumentation (CAPSI) on adjacent segment degeneration (ASD). METHODS: A normal male volunteer without a history of spinal disease was selected, lumbar CT data was collected, an intact L3-S1 three-dimensional finite element model was created by software including Mimics, Geomagic, and SolidWorks, and the fixation methods were performed accordingly. A common pedicle screw model and a cement-augmented pedicle screw model of L4-L5 with fusion and internal fixation were constructed. With ANSYS Workbench 17.0, a 500 N load was applied to the upper surface of L3 to simulate the weight of a human body, and a 7.5 N m moment was applied at the neutral point to simulate flexion, extension, left/right bending, left/right rotation of the spine. The peak von Mises stress of intervertebral disc and the range of motion (ROM) on the adjacent segments (L3-4 and L5-S1) were compared. RESULTS: The validity of the intact model shows that the ROM of the model is similar to that of a cadaveric study. Compared with the intact model, CPS model and CAPSI model in all motion patterns increased the ROM of adjacent segments. The intervertebral disc stress and the ROM of adjacent segments were found to be higher in the CAPSI model than in the CPS model, especially in L3-4. CONCLUSION: In general, the biomechanical analysis of an osteoporotic lumbar spine showed that both CPS and CAPSI can increase the ROM and disc stresses of osteoporotic lumbar models, and compared with CPS, CAPSI is more likely to increase the potential risk of adjacent segment degeneration.


Assuntos
Cimentos Ósseos , Análise de Elementos Finitos , Imageamento Tridimensional/métodos , Vértebras Lombares/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Parafusos Pediculares , Sacro/diagnóstico por imagem , Adulto , Humanos , Vértebras Lombares/cirurgia , Masculino , Osteoporose/cirurgia , Sacro/cirurgia , Tomografia Computadorizada por Raios X/métodos
20.
Biomater Sci ; 8(6): 1726-1733, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-31995039

RESUMO

Disulfiram (DSF) exerts potent anticancer activity via the formation of chelates with copper or zinc ions in tumor tissues, but the low abundance of these ions in the tumor cannot sustain its antitumor activity. Herein, we show that a zwitterionic water-soluble N-oxide polymer, poly[2-(N-oxide-N,N-dimethylamino)ethyl methacrylate] (OPDMA), can complex cupric ions and form nanogels (OPDMA/Cu), which efficiently deliver copper ions to tumor tissue to potentiate DSF significantly for effective antitumor therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Cobre/administração & dosagem , Dissulfiram/administração & dosagem , Administração Intravenosa , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Dissulfiram/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Nanogéis , Óxidos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA