Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Electrophoresis ; 44(1-2): 82-88, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031791

RESUMO

Precise cell detecting and counting is meaningful in circulating tumor cells (CTCs) analysis. In this work, a simple cyclic olefin copolymer (COC) microflow cytometer device was developed for size-resolved CTCs counting. The proposed device is constructed by a counting channel and a pinched injection unit having three channels. Through injection flow rate control, microspheres/cells can be focused into the centerline of the counting channel. Polystyrene microspheres of 3, 9, 15, and 20 µm were used for the microspheres focusing characterization. After coupling to laser-induced fluorescence detection technique, the proposed device was used for polystyrene microspheres counting and sizing. A count accuracy up to 97.6% was obtained for microspheres. Moreover, the proposed microflow cytometer was applied to CTCs detecting and counting. To mimic blood sample containing CTCs and CTCs mixture with different subtypes, an MDA-MB-231 (human breast cell line) spiked red blood cells sample and a mixture of MDA-MB-231 and MCF-7 (human breast cell line) sample were prepared, respectively, and then analyzed by the developed pinched flow-based microfluidic cytometry. The simple fabricated and easy operating COC microflow cytometer exhibits the potential in the point-of-care clinical application.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Microfluídica/métodos , Células Neoplásicas Circulantes/patologia , Poliestirenos , Citometria de Fluxo , Eritrócitos/patologia , Linhagem Celular Tumoral , Separação Celular/métodos
2.
Brain ; 142(8): 2215-2229, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199454

RESUMO

Charcot-Marie-Tooth disease is a hereditary motor and sensory neuropathy exhibiting great clinical and genetic heterogeneity. Here, the identification of two heterozygous missense mutations in the C1orf194 gene at 1p21.2-p13.2 with Charcot-Marie-Tooth disease are reported. Specifically, the p.I122N mutation was the cause of an intermediate form of Charcot-Marie-Tooth disease, and the p.K28I missense mutation predominately led to the demyelinating form. Functional studies demonstrated that the p.K28I variant significantly reduced expression of the protein, but the p.I122N variant increased. In addition, the p.I122N mutant protein exhibited the aggregation in neuroblastoma cell lines and the patient's peroneal nerve. Either gain-of-function or partial loss-of-function mutations to C1ORF194 can specify different causal mechanisms responsible for Charcot-Marie-Tooth disease with a wide range of clinical severity. Moreover, a knock-in mouse model confirmed that the C1orf194 missense mutation p.I121N led to impairments in motor and neuromuscular functions, and aberrant myelination and axonal phenotypes. The loss of normal C1ORF194 protein altered intracellular Ca2+ homeostasis and upregulated Ca2+ handling regulatory proteins. These findings describe a novel protein with vital functions in peripheral nervous systems and broaden the causes of Charcot-Marie-Tooth disease, which open new avenues for the diagnosis and treatment of related neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Animais , Cálcio/metabolismo , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Linhagem
3.
J Med Genet ; 53(9): 624-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27247351

RESUMO

BACKGROUND: Dentin dysplasia I (DDI) is a genetically heterogeneous autosomal-dominant disorder characterised by rootless teeth with abnormal pulpal morphology, the aetiology of which presents as genetically heterogeneous. METHODS AND RESULTS: Using a cohort of a large Chinese family with 10 patients with DDI, we mapped to a 9.63 Mb candidate region for DDI on chromosome 18q21.2-q21.33. We then identified a mutation IVS7+46C>G which resulted in a novel donor splice site in intron 7 of the VPS4B gene with co-segregation of all 10 affected individuals in this family. The aberrant transcripts encompassing a new insert of 45 bp in size were detected in gingival cells from affected individuals. Protein structure prediction showed that a 15-amino acid insertion altered the ATP-binding cassette of VPS4B. The mutation resulted in significantly reduced expression of mRNA and protein and altered subcellular localisation of VPS4B, indicating a loss of function of VPS4B. Using human gingival fibroblasts, the VPS4B gene was found to act as an upstream transducer linked to Wnt/ß-catenin signalling and regulating odontogenesis. Furthermore, knockdown of vps4b in zebrafish recapitulated the reduction of tooth size and absence of teeth similar to the tooth phenotype exhibited in DDI index cases, and the zebrafish mutant phenotype could be partially rescued by wild-type human VPS4B mRNA. We also observed that vps4b depletion in the zebrafish negatively regulates the expression of some major genes involved in odontogenesis. CONCLUSIONS: This study identifies VPS4B as a disease-causing gene for DDI, which is one of the important contributors to tooth formation, through the Wnt/ß-catenin signalling pathway.


Assuntos
Adenosina Trifosfatases/genética , Displasia da Dentina/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação/genética , Splicing de RNA/genética , ATPases Associadas a Diversas Atividades Celulares , Animais , Povo Asiático/genética , Sequência de Bases , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Odontogênese/genética , Linhagem , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , Via de Sinalização Wnt/genética , Peixe-Zebra/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA