Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835479

RESUMO

The worldwide spread of COVID-19 continues to impact our lives and has led to unprecedented damage to global health and the economy. This highlights the need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. We modified a single-domain antibody, SARS-CoV-2 VHH, to the surface of the liposomes. These immunoliposomes demonstrated a good neutralizing ability, but could also carry therapeutic compounds. Furthermore, we used the 2019-nCoV RBD-SD1 protein as an antigen with Lip/cGAMP as the adjuvant to immunize mice. Lip/cGAMP enhanced the immunity well. It was demonstrated that the combination of RBD-SD1 and Lip/cGAMP was an effective preventive vaccine. This work presented potent therapeutic anti-SARS-CoV-2 drugs and an effective vaccine to prevent the spread of COVID-19.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Anticorpos de Domínio Único , Animais , Camundongos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Lipossomos/imunologia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/uso terapêutico
2.
Langmuir ; 35(21): 7018-7025, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31066285

RESUMO

There is a growing interest in the use of hybrid liposomes for various biochemical and biomedical applications. In this study, we report the first preparation and characterization of a class of TiO2-reinforced liposomes by a one-step assembly approach. The amphiphilic natural structure of lipids is exploited to localize a hydrophobic molecule, namely, precursor tetrabutyl titanate (TBOT), in the mid-plane of the liposomal bilayer assemblies in the aqueous phase. In situ TiO2 nanoshell formation is driven by subsequent interfacial hydrolysis of TBOT and the ensuing condensation within the hydrophobic interstices of the lipid bilayer. The core-shell structure, like cell and wall, is demonstrated by means of scanning electron microscopy and transmission electron microscopy images, and the formation of the TiO2 shell is confirmed using energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. To study the structural evolution of the hybrid liposomes during titania formation, fluorescence probe technique and surface pressure versus molecular area (π- A) isotherms are designed. The results demonstrate that the incorporation of TBOT into the mid-membrane of the lipid and titania in the core of the membrane strengthened the assembly of the lipid bilayer. We further demonstrate that titania shell improved the stability and release property of liposomes. We expect that the reported new TiO2-coated liposomes by co-assembly will be valuable in designing hybrid liposomes, exhibiting integrative capacity for drug encapsulation, compartment reaction, and photocatalysis.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas , Titânio/química , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA