Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(25): e2200688, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35599429

RESUMO

In spite of efforts to fabricate self-assembled energy storage nanopaper with potential applications in displays, greenhouses, and sensors, few studies have investigated their multiple stimuli-sensitivities. Here, an opto- and thermal-rewrite phase change material/cellulose nanofibril (PCM/CNF) energy storage nanopaper with mechanical regulated performance is facilely fabricated, through 5 min sonication of PCMs and CNFs in an aqueous system. The combination of PCM and CNF not only guarantees the recyclability of PCM without leakage, but also offers nanopaper adaptive properties by leveraging the mobility and optical variation accompanying solid-to-liquid transition of PCM. Besides, trace near-infrared (NIR) dye (IR 780) in it imparts a PCM-embedded nanopaper photothermal effect to modulate the local transparency via time- and position-controlled laser exposure, leading to a reusable opto-writing nanopaper. Furthermore, since the synergistic effect of stick-and-slip function attributes from PCMs and pore structures are produced by calcium ions, the PCM/CNF energy storage nanopaper exhibits excellent mechanically regulated performance from rigid to flexible, which greatly enriches their application in energy-efficient smart buildings and displays.


Assuntos
Celulose , Indóis , Celulose/química , Temperatura Alta , Água
2.
Biomacromolecules ; 17(7): 2417-26, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27303948

RESUMO

Cellulose nanofibrils (CNFs) are considered next generation, renewable reinforcements for sustainable, high-performance bioinspired nanocomposites uniting high stiffness, strength and toughness. However, the challenges associated with making well-defined CNF/polymer nanopaper hybrid structures with well-controlled polymer properties have so far hampered to deduce a quantitative picture of the mechanical properties space and deformation mechanisms, and limits the ability to tune and control the mechanical properties by rational design criteria. Here, we discuss detailed insights on how the thermo-mechanical properties of tailor-made copolymers govern the tensile properties in bioinspired CNF/polymer settings, hence at high fractions of reinforcements and under nanoconfinement conditions for the polymers. To this end, we synthesize a series of fully water-soluble and nonionic copolymers, whose glass transition temperatures (Tg) are varied from -60 to 130 °C. We demonstrate that well-defined polymer-coated core/shell nanofibrils form at intermediate stages and that well-defined nanopaper structures with tunable nanostructure arise. The systematic correlation between the thermal transitions in the (co)polymers, as well as its fraction, on the mechanical properties and deformation mechanisms of the nanocomposites is underscored by tensile tests, SEM imaging of fracture surfaces and dynamic mechanical analysis. An optimum toughness is obtained for copolymers with a Tg close to the testing temperature, where the soft phase possesses the best combination of high molecular mobility and cohesive strength. New deformation modes are activated for the toughest compositions. Our study establishes quantitative structure/property relationships in CNF/(co)polymer nanopapers and opens the design space for future, rational molecular engineering using reversible supramolecular bonds or covalent cross-linking.


Assuntos
Celulose/química , Nanocompostos/química , Nanofibras/química , Polímeros/química , Água/química , Vidro , Resistência à Tração , Temperatura de Transição
3.
Angew Chem Int Ed Engl ; 54(30): 8653-7, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26095789

RESUMO

Designing the reversible interactions of biopolymers remains a grand challenge for an integral mimicry of mechanically superior biological composites. Yet, they are the key to synergistic combinations of stiffness and toughness by providing sacrificial bonds with hidden length scales. To address this challenge, dynamic polymers were designed with low glass-transition temperature T(g) and bonded by quadruple hydrogen-bonding motifs, and subsequently assembled with high-aspect-ratio synthetic nanoclays to generate nacre-mimetic films. The high dynamics and self-healing of the polymers render transparent films with a near-perfectly aligned structure. Varying the polymer composition allows molecular control over the mechanical properties up to very stiff and very strong films (E≈45 GPa, σ(UTS)≈270 MPa). Stable crack propagation and multiple toughening mechanisms occur in situations of balanced dynamics, enabling synergistic combinations of stiffness and toughness. Excellent gas barrier properties complement the multifunctional property profile.


Assuntos
Materiais Biomiméticos/química , Nácar/química , Polímeros/química , Biomimética , Ligação de Hidrogênio , Fenômenos Mecânicos , Temperatura de Transição
4.
Biomacromolecules ; 13(12): 4205-12, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23102411

RESUMO

Sustainable alternatives for high-performance and functional materials based on renewable resources are intensely needed as future alternatives for present-day, fossil-based materials. Nanochitin represents an emerging class of highly crystalline bionanoparticles with high intrinsic mechanical properties and the ability for conjugation into functional materials owing to reactive amine and hydroxyl groups. Herein we demonstrate that hydrogels containing surface-deacetylated chitin nanofibrils of micrometer length and average diameters of 9 nm, as imaged by cryogenic transmission electron microscopy, can be wet-spun into macrofibers via extrusion in a coagulation bath, a simple low energy and large-scale processing route. The resulting biofibers display attractive mechanical properties with a large plastic region of about 12% in strain, in which frictional sliding of nanofibrils allows dissipation of fracture energy and enables a high work-of-fracture of near 10 MJ/m3. We further show how to add functionality to these macrofibers by exploiting the amine functions of the surface chitosan groups to host catalytically active noble metal nanoparticles, furnishing biobased, renewable catalytic hybrids. These inorganic/organic macrofibers can be used repeatedly for fast catalytic reductions of model compounds without loss of activity, rendering the concept of hybridized chitin materials interesting as novel bioderived supports for nanoparticle catalysts.


Assuntos
Materiais Biocompatíveis/química , Quitina/química , Hidrogéis/química , Nanopartículas Metálicas/química , Platina/química , Catálise , Quitosana/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Difração de Raios X
5.
ACS Appl Mater Interfaces ; 8(17): 11031-40, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27067311

RESUMO

Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites.


Assuntos
Nanocompostos , Nanopartículas , Celulose , Ligação de Hidrogênio , Polímeros
6.
ACS Appl Mater Interfaces ; 8(8): 5668-78, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26844956

RESUMO

We passivated TEMPO-oxidized cellulose nanofibrils (TOCNF) toward human immunoglobulin G (hIgG) by modification with block and random copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA). The block copolymers reversibly adsorbed on TOCNF and were highly effective in preventing nonspecific interactions with hIgG, especially if short PDMAEMA blocks were used. In such cases, total protein rejection was achieved. This is in contrast to typical blocking agents, which performed poorly. When an anti-human IgG biointerface was installed onto the passivated TOCNF, remarkably high affinity antibody-antigen interactions were observed (0.90 ± 0.09 mg/m(2)). This is in contrast to the nonpassivated biointerface, which resulted in a significant false response. In addition, regeneration of the biointerface was possible by low pH aqueous wash. Protein A from Staphylococcus aureus was also utilized to successfully increase the sensitivity for human IgG recognition (1.28 ± 0.11 mg/m(2)). Overall, the developed system based on TOCNF modified with multifunctional polymers can be easily deployed as bioactive material with minimum fouling and excellent selectivity.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Nanofibras/química , Proteína Estafilocócica A/química , Materiais Biocompatíveis/síntese química , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Metacrilatos/química , Nylons/química , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/química , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA