Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(2): 37, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353759

RESUMO

The adsorption/desorption of Rhodamine B (RhB) on Polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) microplastics (MPs) was investigated in this study. The results showed that RhB adsorption on the selected MPs was fast. The adsorption coefficients (Kd) of RhB were 2036 ± 129, 1557 ± 91, and 63 ± 8.5 L kg- 1 for PS, PP, and PVC, respectively. RhB adsorption on PS and PP increased with increasing temperature and decreasing ionic strength, whereas RhB adsorption on PVC showed a completely opposite trend. The binding strength of RhB on the three types of MPs was weak as demonstrated by the high total desorption percentage, which ranged from 79.59 ~ 89.39%. This study shows that PP and PS MPs can accumulate RhB in the aquatic environment and their potential combined toxic risks should be taken seriously.


Assuntos
Microplásticos , Água , Adsorção , Microplásticos/toxicidade , Plásticos , Polipropilenos , Poliestirenos
2.
J Mater Chem B ; 11(12): 2778-2788, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36891927

RESUMO

The development of hemostatic materials suitable for diverse emergency scenarios is of paramount significance, and there is growing interest in wound-site delivery of hemostasis-enhancing agents that can leverage the body's inherent mechanisms. Herein we report the design and performance of a biomimetic nanoparticle system enclosing tissue factor (TF), the most potent known blood coagulation trigger, which was reconstituted into liposomes and shielded by the liposome-templated CaCO3 mineralization. The mineral coatings, which mainly comprised water-soluble amorphous and vateritic phases, synergized with the lipidated TF to improve blood coagulation in vitro. These coatings served as sacrificial masks capable of releasing Ca2+ coagulation factors or propelling the TF-liposomes via acid-aided generation of CO2 bubbles while endowing them with high thermostability under dry conditions. In comparison to commercially available hemostatic particles, CaCO3 mineralized TF-liposomes yielded significantly shorter hemostasis times and less blood loss in vivo. When mixed with organic acids, the CO2-generating formulation further improved hemostasis by delivering TF-liposomes deep into actively bleeding wounds with good biocompatibility, as observed in a rat hepatic injury model. Therefore, the designed composite mimicry of coagulatory components exhibited strong hemostatic efficacy, which in combination with the propulsion mechanism would serve as a versatile approach to treating a variety of severe hemorrhages.


Assuntos
Hemostáticos , Tromboplastina , Ratos , Animais , Tromboplastina/farmacologia , Lipossomos/farmacologia , Dióxido de Carbono , Coagulação Sanguínea , Hemostáticos/farmacologia , Hemorragia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA