Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 149(8): 2436-2444, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498083

RESUMO

Paper-based electrochemical sensors have the characteristics of flexibility, biocompatibility, environmental protection, low cost, wide availability, and hydropathy, which make them very suitable for the development and application of biological detection. This work proposes electrospun cellulose acetate nanofiber (CA NF)-decorated paper-based screen-printed (PBSP) electrode electrochemical sensors. The CA NFs were directly collected on the PBSP electrode through an electrospinning technique at an optimized voltage of 16 kV for 10 min. The sensor was functionalized with different bio-sensitive materials for detecting different targets, and its sensing capability was evaluated by CV, DPV, and chronoamperometry methods. The test results demonstrated that the CA NFs enhanced the detection sensitivity of the PBSP electrode, and the sensor showed good stability, repeatability, and specificity (p < 0.01, N = 3). The electrochemical sensing of the CA NF-decorated PBSP electrode exhibited a short detection duration of ∼5-7 min and detection ranges of 1 nmol mL-1-100 µmol mL-1, 100 fg mL-1-10 µg mL-1, and 1.5 × 102-106 CFU mL-1 and limits of detection of 0.71 nmol mL-1, 89.1 fg mL-1, and 30 CFU mL-1 for glucose, Ag85B protein, and E. coli O157:H7, respectively. These CA NF-decorated PBSP sensors can be used as a general electrochemical tool to detect, for example, organic substances, proteins, and bacteria, which are expected to achieve point-of-care testing of pathogenic microorganisms and have wide application prospects in biomedicine, clinical diagnosis, environmental monitoring, and food safety.


Assuntos
Técnicas Biossensoriais , Celulose/análogos & derivados , Escherichia coli O157 , Nanofibras , Nanofibras/química , Celulose/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
2.
J Environ Sci (China) ; 44: 204-212, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27266317

RESUMO

To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater.


Assuntos
Corantes/química , Filtração/instrumentação , Triazenos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Cerâmica , Filtração/métodos , Resíduos Industriais , Membranas Artificiais , Porosidade , Eletricidade Estática , Propriedades de Superfície
3.
J Hazard Mater ; 320: 495-503, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591682

RESUMO

A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field.


Assuntos
Terra de Diatomáceas/química , Óxido de Magnésio/química , Nanoestruturas/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Filtração , Membranas Artificiais , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA