RESUMO
BACKGROUND: Sleep-disordered breathing (SDB) during childhood is common and includes a range of breathing abnormalities that range from primary snoring (PS) to obstructive sleep apnea syndrome (OSAS).Studies have shown that not only OSAS, but also PS, which is originally considered harmless, could cause cardiovascular, cognitive, behavioral, and psychosocial problems. Many researches are focused on the relation of OSA and serum lipid levels. However, little studies are focused on PS and serum lipid levels in children.We evaluated whether serum lipid (total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol (LDL-C)) concentrations were associated with specific components of SDB, including indices of oxygen reduction index, lowest oxygen saturation, mean oxygen saturation. And we explored whether serum lipid levels were associated with different degree sleep disordered (PS and OSA group) and obese. METHODS: This was a cross-sectional study. Children who were complained by their guardians with habitual snoring and(or) mouth breathing were collected in the SDB group. Normal children without sleep problem were matched in the control group. Subjects in the SDB group underwent polysomnography. The serum lipid profiles of all the children included TC, TG, HDL-C and LDL-C concentrations were measured by appropriate enzymatic assays. RESULTS: A total of 241 with Apnea/Hypopnea Index ≥ 5 (AHI) were assigned to the OSAS group and the remaining 155 with normal AHI were assigned to the PS group. The values of TC, TG, LDL-C and LDL/HDL were significantly higher in the OSAS group than in the PS group, and the values in the PS group were significantly higher than the control group. Multiple regression analysis revealed serum TG only correlated negatively with lowest oxygen saturation. Body mass index-z score has a positive effect on TG in all the 1310 children (P = 0.031) and in SDB 396 children(P = 0.012). The level of serum TG in obese group was significantly higher than that in non-obese group. CONCLUSIONS: SDB had a very obvious effect on blood lipids, whereas PS without apnea and hypoxia. Obese only affects the aggregation of TG. TRIAL REGISTRATION: ChiCTR1900026807(2019.10.23).
Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Criança , Humanos , Ronco , Estudos de Casos e Controles , LDL-Colesterol , Estudos Transversais , Síndromes da Apneia do Sono/complicações , Apneia Obstrutiva do Sono/complicações , Triglicerídeos , HDL-Colesterol , Lipídeos , Obesidade/complicações , Hipóxia/etiologiaRESUMO
In this study, sodium carboxymethyl cellulose/poly(acrylic acid) (CMC/PAA) microgels were successfully synthesized via visible-light-triggered free-radical polymerization to remove methylene blue (MB) from water. The microgels had a loose and porous 3-D network structure, exhibiting excellent adsorption performance. The equilibrium adsorption capacity and the removal efficiency of the microgels reached approximately 1479 mg/g and 97%, respectively, when the initial concentration of MB was 300 mg/L. The adsorption kinetics was well described by the pseudo-second-order model, and the adsorption isotherms followed the Langmuir isothermal model. Notably, CMC/PAA microgels could naturally settle and be separated from the MB solution. Furthermore, the recovery efficiency of the regenerated CMC/PAA microgels reached approximately 94% after five adsorption-desorption cycles. Therefore, the microgels could be used as promising adsorbents due to the advantages of high adsorption capacity, fast removal rate, and reusability.
Assuntos
Microgéis , Poluentes Químicos da Água , Resinas Acrílicas , Adsorção , Carboximetilcelulose Sódica/química , Cátions/química , Corantes/química , Cinética , Azul de Metileno/química , Polimerização , Sódio , Poluentes Químicos da Água/químicaRESUMO
The use of flexible polyurethane foam (FPUF) is severely limited due to its flammability and dripping, which can easily cause major fire hazards. Therefore, choosing an appropriate flame retardant to solve this problem is an urgent need. A coating was prepared on the FPUF surface by dipping with phytic acid (PA), Fe2(SO4)3·xH2O, and laponite (LAP). The influence of PA-Fe/LAP coating on FPUF flame-retardant performance was explored by thermal stability, flame retardancy, combustion behavior, and smoke density analysis. FPUF/PA-Fe/LAP has a good performance in the small fire test, which can pass the UL-94 V-0 rating and the limiting oxygen index reaches 24.5%. Meanwhile, the peak heat release rate values and maximum smoke density of FPUF/PA-Fe/LAP are reduced by 38.7% and 38.5% compared with those of neat FPUF. After applying PA-Fe/LAP coating, the value of fire growth rate index decreases from 10.5 kW/(m2·s) to 5.1 kW/(m2·s), dramatically reducing the fire risk. Encouragingly, the effect of PA-Fe/LAP coating on cyclic compression and permanent deformation is small, which is close to that of neat FPUF. This work provides an effective strategy for making a flame-retardant FPUF with antidripping and keeping mechanical properties.
Assuntos
Retardadores de Chama , Ácido Fítico , Ferro , Poliuretanos , Silicatos , FumaçaRESUMO
After millions of years of evolution, biological chemical sensing systems (i.e., olfactory and taste systems) have become very powerful natural systems which show extreme high performances in detecting and discriminating various chemical substances. Creating field-effect sensors using biomaterials that are able to detect specific target chemical substances with high sensitivity would have broad applications in many areas, ranging from biomedicine and environments to the food industry, but this has proved extremely challenging. Over decades of intense research, field-effect sensors using biomaterials for chemical sensing have achieved significant progress and have shown promising prospects and potential applications. This review will summarize the most recent advances in the development of field-effect sensors using biomaterials for chemical sensing with an emphasis on those using functional biomaterials as sensing elements such as olfactory and taste cells and receptors. Firstly, unique principles and approaches for the development of these field-effect sensors using biomaterials will be introduced. Then, the major types of field-effect sensors using biomaterials will be presented, which includes field-effect transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive electrolyte-insulator-semiconductor (EIS) sensors. Finally, the current limitations, main challenges and future trends of field-effect sensors using biomaterials for chemical sensing will be proposed and discussed.
Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais , Eletrólitos , Potenciometria , SemicondutoresRESUMO
OBJECTS: To simulate and compare salivary flow patterns over a tooth surface bonded with different orthodontic appliances using computational fluid dynamics (CFD) and investigate the impact of bracket design on salivary flow in relation to peri-bracket bacterial accumulation. SETTING AND SAMPLE POPULATION: The models were constructed using computed tomography (CT) data of 81 patients scheduled for fixed orthodontic treatment: 27 patients (10 males, 17 females) for the metal Victory MBT™ bracket; 27 patients (seven males, 20 females) for the ceramic Clarity MBT™ bracket; 27 patients (15 males, 12 females) for the Mini Uni-Twin (MUT) bracket. METHODS: The salivary flow patterns were simulated by CFD and compared between the groups and the model predictions were validated using a bacteriological experiment. RESULTS: The MUT bracket was associated with the greatest number of low salivary velocity areas, as it is designed with a connector between double tie wings and a right contact angle between tooth surface and bracket base. After archwire placement, the centred slot in the bracket and the bilateral sites around the bracket had higher bacterial retention and needed special oral hygiene measures. The obtuse contact angle of the ceramic bracket formed a pocket structure in the tie-wing area, retarding salivary flow and contributing to bacteria retention. CONCLUSION: With the evaluation of CFD models, we demonstrate that salivary flow patterns over a tooth surface with a bracket vary with bracket designs and further promote bacterial retention in specific locations, suggesting the need for additional oral hygiene measures for specific bracket types.
Assuntos
Braquetes Ortodônticos , Bactérias , Feminino , Humanos , Hidrodinâmica , Masculino , Teste de Materiais , Desenho de Aparelho Ortodôntico , Fios OrtodônticosRESUMO
BACKGROUND: The Orsiro biodegradable polymer sirolimus-eluting stent (O-SES) is a new-generation biodegradable polymer drug-eluting stent with the thinnest strut thickness to date developed to improve the percutaneous treatment of patients with coronary artery disease. We perform a meta-analysis of randomized clinical trials (RCTs) comparing the efficacy and safety of an ultra-thin, Orsiro biodegradable polymer sirolimus-eluting stent (O-SES) compared with durable polymer drug-eluting stents (DP-DESs). METHODS: Medline, Embase, and CENTRAL databases were searched for randomized controlled trials comparing the safety and efficacy of O-SES versus DP-DES. Paired reviewers independently screened citations, assessed risk of bias of included studies, and extracted data. We used the Mantel-Haenszel method to calculate risk ratio (RR) by means of a random-effects model. RESULTS: Six RCTs with a total of 6949 patients were selected. All included trials were rated as low risk of bias. The O-SES significantly reduced the risk of myocardial infarction (RR 0.78, 95% confidence interval [CI] 0.62-0.98; I2 = 0%; 10 fewer per 1000 [from 1 fewer to 18 fewer]; high quality) compared with the DP-DES. There was no significant difference between O-SES and DP-DES in the prevention of stent thrombosis (RR: 0.75; 95% CI: 0.52-1.08), cardiac death (RR: 0.93; 95% CI: 0.63-1.36), target lesion revascularization (RR 1.10, 95% CI 0.86-1.42) and target vessel revascularization (RR 0.97, 95% CI 0.78-1.21). CONCLUSION: Among patients undergoing percutaneous coronary intervention, O-SES resulted in significantly lower rates of myocardial infarction than DP-DES and had a trend toward reduction in stent thrombosis.
Assuntos
Implantes Absorvíveis , Fármacos Cardiovasculares/administração & dosagem , Doença da Artéria Coronariana/cirurgia , Stents Farmacológicos , Intervenção Coronária Percutânea/instrumentação , Polímeros/química , Sirolimo/administração & dosagem , Fármacos Cardiovasculares/efeitos adversos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/mortalidade , Trombose Coronária/etiologia , Humanos , Infarto do Miocárdio/etiologia , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/mortalidade , Desenho de Prótese , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Sirolimo/efeitos adversos , Resultado do TratamentoRESUMO
INTRODUCTION: The objective of this study was to provide new clues for the prevention and early management of root dilacerations in impacted maxillary central incisors. METHODS: Cone-beam computed tomography images of 108 patients with unilateral impacted maxillary central incisors were obtained and reconstructed into 3-dimensional models. Crown direction, crown height, root length, bone thickness, and position and angle of root dilaceration were measured in the sagittal-view sections. K-value, defined as the ratio between the available length of the direct root and the ideal length of the direct root, was proposed, and the relationships between K-values with root dilacerations were studied. Root development of the contralateral erupted maxillary incisor was also assessed. Independent t test, chi-square test, and 1-way analysis of variance were used for data analysis. RESULTS: Root dilacerations occurred when the K-values were 0.16 to 0.19 (palatal impaction), 0.25 to 0.53 (labial impaction), and 0.69 to 0.75 (nasal impaction). The position and angle of root dilacerations were different among nasal, labial, and palatal impactions (P <0.01). K-values and positions of root dilacerations among nasally, labially, and palatally impacted incisors were in descending order, respectively. Retarded root formation was noted in the impacted incisors compared with the contralateral incisors (P <0.001). CONCLUSIONS: Nasal, labial, and palatal impacted incisors had different patterns of root dilacerations. Analyses of crown direction and K-value may aid in evaluating root dilacerations at early dental ages and facilitating early intervention of impacted incisors.
Assuntos
Tomografia Computadorizada de Feixe Cônico , Imageamento Tridimensional , Incisivo , Maxila , Dente Impactado/diagnóstico por imagem , Dente Impactado/terapia , Adolescente , Criança , Feminino , Humanos , Masculino , Estudos RetrospectivosRESUMO
UNLABELLED: Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two most common etiological agents responsible for the epidemics of hand, foot, and mouth disease (HFMD), a childhood illness with occasional severe neurological complications. A number of vaccine candidates against EV71 or CA16 have been reported; however, no vaccine is currently available for clinical use. Here, we generated a secreted version of EV71 and CA16 virus-like particles (VLPs) using a baculovirus-insect cell expression system and reconstructed the three-dimensional (3D) structures of both VLPs by cryo-electron microscopy (cryo-EM) single-particle analysis at 5.2-Å and 5.5-Å resolutions, respectively. The reconstruction results showed that the cryo-EM structures of EV71 and CA16 VLPs highly resemble the recently published crystal structures for EV71 natural empty particles and CA16 135S-like expanded particles, respectively. Our cryo-EM analysis also revealed that the majority of previously identified linear neutralizing epitopes are well preserved on the surface of EV71 and CA16 VLPs. In addition, both VLPs were able to induce efficiently neutralizing antibodies against various strains of EV71 and CA16 viruses in mouse immunization. These studies provide a structural basis for the development of insect cell-expressed VLP vaccines and for a potential bivalent VLP vaccine against both EV71- and CA16-associated HFMD. IMPORTANCE: The recent outbreaks of hand, foot, and mouth disease (HFMD) in the Asia Pacific region spurred the search for effective vaccines against EV71 and CA16 viruses, the two most common etiological agents responsible for HFMD. In this paper, we show that secreted versions of EV71 and CA16 VLPs generated in the baculovirus-insect cell expression system highly resemble the crystal structures of their viral conterparts and that the majority of previously identified linear neutralizing epitopes are well preserved on the VLP surfaces. In addition, the generated VLPs can efficiently induce neutralizing antibodies against various strains of EV71 and CA16 viruses in mouse immunization. These studies provide a structural basis for the development of insect cell-expressed VLP vaccines and for a potential bivalent VLP vaccine against both EV71- and CA16-associated HFMD.
Assuntos
Microscopia Crioeletrônica/métodos , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Modelos Moleculares , Conformação Molecular , Vírion/química , Animais , Baculoviridae , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Ultracentrifugação , Vacinas Virais/genética , Vírion/genéticaRESUMO
An 8-year-old Chinese girl sought treatment for a severe skeletal Class III malocclusion and open-bite skeletal pattern. Traditionally, patients with a skeletal Class III malocclusion are treated after they have stopped growing, and then they are treated with a combined orthodontic and orthognathic surgery approach. But the risks and expenses of this treatment plan are not acceptable to all patients. This young patient was treated with facemask therapy, a maxillary expansion device, and a molar occlusal splint for maxillary developmental stimulation with control of vertical jaw growth. After the completion of orthopedic therapy, 2 × 4 technology was used to adjust molar positions. A bonded tongue crib was used in the early permanent dentition to help the patient break her bad tongue habits. Straight-wire appliances were used for 16 months to adjust the occlusal relationship. This achieved significant improvement in anterior tooth relationships and facial profile esthetics. At the 2-year posttreatment follow-up, the results were satisfactory. The success of the sagittal relationship correction between the maxilla and the mandible for a skeletal Class III malocclusion depends on the coordination of transverse and vertical relationships combined with the growth potential of each patient.
Assuntos
Má Oclusão Classe III de Angle/terapia , Mordida Aberta/terapia , Planejamento de Assistência ao Paciente , Cefalometria/métodos , Criança , Aparelhos de Tração Extrabucal , Feminino , Seguimentos , Humanos , Mandíbula/patologia , Maxila/crescimento & desenvolvimento , Desenvolvimento Maxilofacial/fisiologia , Placas Oclusais , Desenho de Aparelho Ortodôntico , Técnica de Expansão Palatina/instrumentação , Rotação , Hábitos Linguais/terapia , Técnicas de Movimentação Dentária/instrumentação , Resultado do TratamentoRESUMO
Personal health monitoring is very important for the health operation of special populations, like newborns and the old. But how to construct a sensor that can achieve real-time monitoring without the need for an external power supply still faces serious challenges. In this paper, a flexible, breathable and self-powered sensor based on triboelectric nanogenerators (TENG) was designed. Silk fibroin (SF) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fiber membranes were prepared by electro-spinning, and a u-shaped circuit was sprayed on one side of the fiber membrane as the electrode. Separating by an elastic silicone ring of the two fiber membranes, the all-fiber and self-powered sensor with a simple structure, good stability, and high output performance was developed. The as prepared sensor can instantly light up hundreds of LEDs by hand tapping. The sensor prepared in this work may have some potential applications in wearable devices and energy systems for real-time monitoring of abdominal breathing.
Assuntos
Fibroínas , Dispositivos Eletrônicos Vestíveis , Recém-Nascido , Humanos , Polivinil , RespiraçãoRESUMO
Applications for cotton fabrics with multifunctional qualities, such as flame retardancy, hydrophobicity, and anti-ultraviolet properties, are increasingly common and growing daily. The primary objective of this study is to investigate the preparation of flame retardant, hydrophobic, and ultraviolet (UV) protection cotton fabrics through the utilization of Poly-dimethylsiloxane-co-diphenylsiloxane, dihydroxy terminated (HTDMS) and ammonia phytate (AP). The flame retardancy, thermal stability, mechanical properties, anti-UV properties, air permeability and the hydrophobicity properties of coated cotton fabrics were evaluated. The results indicated that the HTDMS/AP coating was successfully deposited on the surface of cotton fabrics. The damaged length of Cotton/HTDMS/AP was 4.7 cm, and the limiting oxygen index reached 31.5 %. The thermogravimetric analysis revealed that the char residues in the high-temperature range were increased. Furthermore, cone calorimetry results indicated that after the HTDMS/AP coating, the peak heat release rate, total heat release, and total smoke production values decreased by 88.7 %, 51.2 %, and 98.4 %, respectively. Moreover, the deposition of HTDMS/AP provided cotton fabrics with hydrophobicity with a water contact angle of over 130°, while Cotton/HTDMS/AP maintained their air permeability, and enhanced the breaking force compared with those of Cotton/AP. Such desirable qualities make HTDMS/AP a meaningful coating for producing multifunctional cotton fabrics.
Assuntos
Fibra de Algodão , Dimetilpolisiloxanos , Retardadores de Chama , Interações Hidrofóbicas e Hidrofílicas , Dimetilpolisiloxanos/química , Ácido Fítico/química , Amônia/química , Têxteis , Permeabilidade , Resistência à TraçãoRESUMO
The excellent comprehensive properties of microfiber synthetic leathers have led to their wide application in various aspects of our lives. However, the issue of flammability remains a significant challenge that needs to be addressed. Nowadays, the bio-based chemicals used in the flame-retardant materials have extremely grabbed our eyes. Herein, we developed an ecologically friendly flame-retardant microfiber synthetic leather using phosphorus-free layer-by-layer assembly technology (LBL) based on natural polysaccharide alginate (SA) coupled with polyethyleneimine (PEI) and 3-aminopropyltriethoxysilane (APTES). The effect of different LBL coating systems on the flame retardancy of microfiber synthetic leather was investigated. The results demonstrated that the introduction of APTES can completely inhibit the melt-dripping by enhancing char formation through silica elements. Furthermore, the trinary coating system consisting of SA/APTES/PEI exhibited excellent flame retardancy by combining gas-phase action from PEI and condensed-phase function from APTES. This modified microfiber synthetic leather showed a significantly higher limiting oxygen index (LOI) value of 33.0 % with no molten droplet. Additionally, the SA-based coating slightly suppressed the heat release, resulting in a 20 % reduction in total heat release during the combustion test. Overall, this work presents a facile and environmentally-friendly approach for achieving flame-retardant and anti-dripping microfiber synthetic leather.
Assuntos
Alginatos , Retardadores de Chama , Propilaminas , Silanos , Epiderme , Olho , Fósforo , PolietilenoiminaRESUMO
The production of small-diameter artificial vascular grafts continues to encounter numerous challenges, with concerns regarding the degradation rate and endothelialization being particularly critical. In this study, porous PCL scaffolds were prepared, and PCL vascular grafts were fabricated by 3D bioprinting of collagen materials containing adipose-derived mesenchymal stem cells (ADSCs) on the internal wall of the porous PCL scaffold. The PCL vascular grafts were then implanted in the abdominal aorta of Rhesus monkeys for up to 640 days to analyze the degradation of the scaffolds and regeneration of the aorta. Changes in surface morphology, mechanical properties, crystallization property, and molecular weight of porous PCL revealed a similar degradation process of PCL in PBS at pH 7.4 containing Thermomyces lanuginosus lipase and in situ in the abdominal aorta of rhesus monkeys. The contrast of in vitro and in vivo degradation provided valuable reference data for predicting in vivo degradation based on in vitro enzymatic degradation of PCL for further optimization of PCL vascular graft fabrication. Histological analysis through hematoxylin and eosin (HE) staining and fluorescence immunostaining demonstrated that the PCL vascular grafts successfully induced vascular regeneration in the abdominal aorta over the 640-day period. These findings provided valuable insights into the regeneration processes of the implanted vascular grafts. Overall, this study highlights the significant potential of PCL vascular grafts for the regeneration of small-diameter blood vessels.
Assuntos
Aorta Abdominal , Prótese Vascular , Colágeno , Células-Tronco Mesenquimais , Poliésteres , Animais , Tecido Adiposo/citologia , Implante de Prótese Vascular , Colágeno/química , Macaca mulatta , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Poliésteres/química , Alicerces Teciduais/químicaRESUMO
Since the fire hazards of polyester-cotton blended (PTCO) fabrics and the hidden dangers of bacterial infection concerns caused by the contained cotton fiber, the design of flame retardant and antibacterial PTCO fabrics has received considerable attention. In this work, flame-retardant PTCO fabrics with satisfactory antibacterial properties were fabricated via a convenient and eco-friendly impregnation treatment involving guanidine phosphate (GP) and polyethylenimine (PEI). The prepared PTCO fabrics demonstrated excellent flame retardancy with a high limiting oxygen index value of 30.5 % and self-extinguishing capability, the damaged length was only 34 mm in the vertical flammability test. Furthermore, the peak heat release rate and the total heat release of coated PTCO fabrics were reduced significantly by 49 % and 38 %, respectively, indicating a substantial enhancement in fire safety. According to the analysis of the char residues and volatiles, GP presented great catalytic carbonization property, and PEI assisted the formation of the dense and stable carbon layer. The stable carbon layer effectively restricted mass and oxygen transfer between the PTCO fabrics and the environment. In addition, the introduction of PEI also produced more nonflammable gases to enhance the flame retardancy of the PTCO fabrics. Importantly, the GP/PEI coating barely deteriorate the physical and mechanical properties of the PTCO fabrics. The antibacterial rate of the GP/PEI-coated PTCO fabrics against Escherichia coli and Staphylococcus aureus was 99.99 %, similar to that of GP-coated fabrics, indicating the efficacy antibacterial properties of GP, and the addition of PEI did not compromise the antibacterial properties of GP. This work offers an efficient and simple approach to producing multifunctional PTCO fabrics with excellent flame retardancy and antibacterial properties, which are hopeful to expand the promising application of PTCO fabrics.
Assuntos
Antibacterianos , Fibra de Algodão , Retardadores de Chama , Poliésteres , Têxteis , Poliésteres/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade MicrobianaRESUMO
Bacterial cellulose (BC) has been widely applied in various fields due to its excellent physicochemical properties, but its high production cost remains a challenge. Herein, the present study aimed to utilize the hydrolysate of vinegar residue (VR) as the only medium to realize the cost-effective production of BC. The BC production was optimized by the single-factor test. The treatment of 6 % VR concentration with 3 % acid concentration at 100 °C for 1.5 h and 96 U/mL of cellulase for 4 h at 50 °C obtained a maximum reducing sugar concentration of about 32 g/L. Additionally, the VR hydrolysate treated with 3 % active carbon (AC) at 40 °C for 0.5 h achieved a total phenol removal ratio of 86 %. The yield of BC reached 2.1 g/L under the optimum conditions, which was twice compared to the standard medium. The produced BC was characterized by SEM, FT-IR, XRD, and TGA analyses, and the results indicated that the BC prepared by AC-treated VR hydrolysate had higher fiber density, higher crystallinity, and good thermal stability. Furthermore, the regenerated BC (RBC) fibers with a tensile stress of 400 MPa were prepared successfully using AmimCl solution as a solvent by dry-wet-spinning method. Overall, the VR waste could be used as an alternative carbon source for the sustainable production of BC, which could be further applied to RBC fibers preparation.
Assuntos
Ácido Acético , Celulose , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química , Carbono , Carvão VegetalRESUMO
In response to the new concept of green sustainability, it is necessary to expand the functionality of bio-based natural fibers (such as cotton fabrics) to replace fabrics made from fossil fuels. One potential way of achieving this is through the use of phosphorus, boron and nitrogen based organic flame retardants. This article designs a special flame retardant system with high efficiency, high durability, and enhanced fabric strength. An "H" shaped flame retardant (TBSA) is synthesized using hydroxyethyl methylene phosphate, pentaerythritol diborate, and cyanuric chloride. After simple treatment, flame retardant fabric (TBSA/Cotton) is obtained, with a LOI value of 48.8 %. Self extinguishing is completing in the vertical flame test. The high FR efficiency reflects the progressiveness of multi flame retardant elements. It is worth noting that TBSA/Cotton exhibits excellent durability and improves the strength of the fabric. This is attributed to the covalent bonding between the "H" type flame retardant and multiple cellulose molecules, which compensates for the cracks and holes at the submicroscopic scale of natural cellulose and weakens the molecular slip effect. The research results of this article provide a good opportunity for the development of biomass cellulose flame retardant materials.
Assuntos
Retardadores de Chama , Têxteis , Hidrogênio , Prótons , CeluloseRESUMO
Imparting flame retardancy to polyester fabrics is still a pressing issue for the textile industry. To this end, a composite coating was developed by phosphite, pentamethyldisiloxane, urea and sodium alginate, and then applied together with calcium chloride to prepare flame-retardant polyester fabrics. The optimized polyester fabrics named PF-HUSC exhibited a rough surface with P, Si, N and Ca element distributions, as observed by scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). Flame retardancy evaluations showed that the damaged length of PF-HUSC with a limiting oxygen index (LOI) value of 35.3 ± 0.3 % was reduced from the contrastive 17.6 ± 0.4 cm to 4.6 ± 0.2 cm after vertical burning test. Thermogravimetric (TG) test confirmed that PF-HUSC retained a char residue as high as 35.1 % at 700 °C. Cone calorimetry test displayed that the total heat release (THR) and total smoke production (TSP) values of PF-HUSC were reduced to 3.1 MJ/m2 and 1.1 m2, respectively, as compared to those of pure polyester fabrics. More importantly, PF-HUSC still exhibited higher LOI value than that of pure polyester fabrics after 25 washing cycles. Hence, the coating scheme is considered as a new method to expand the preparation of flame-retardant polyester fabrics.
Assuntos
Alginatos , Retardadores de Chama , Cloreto de Cálcio , Calorimetria , Oxigênio , PoliésteresRESUMO
Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm(2)) were separated into their components using dimethyl sulfoxide (DMSO) at 60 °C for 45 min and a metallographic microscope was used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm(2), the temperature required for complete separation increased to 90 °C. When the temperature was increased to 135 °C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs.
Assuntos
Dimetil Sulfóxido/química , Resinas Epóxi/química , Reciclagem/métodos , Cobre/química , Eletrônica/instrumentação , Vidro/química , Halogenação , Solubilidade , TemperaturaRESUMO
A novel and eco-friendly intumescent flame-retardant system based on sodium carboxymethyl cellulose (CMC) was established for wide-used flexible polyurethane foams (FPUFs). FPUF-(APP6CMC1)GN1 with extremely uniform coatings extinguished and reached the UL-94 V-0 rating, and presented an improvement of thermal insulation properties. Moreover, there was a 58 % reduction in peak heat release rate for FPUF-(APP6CMC1)GN1 compared with that of FPUF, and the microstructure analysis of char residues indicated that a perfect intumescent char layer had formed on the surface of FPUFs. Especially, CMC and GN enhanced the compactness and stability of char layers. Therefore, little volatile production was generated under the protection of physical layers in the high temperature as evaluated during the thermal degradation processes. Meanwhile, the flame-retardant FPUFs remained the ideal mechanical properties and obtained excellent antibacterial properties, and the antibacterial rates of E.coli and S.aureus were 99.9 % (FPUF-(APP6CMC1)GN1). This work provides an eco-friendlier strategy for the design of multi-function FPUFs.
Assuntos
Carboximetilcelulose Sódica , Retardadores de Chama , Poliuretanos , Antibacterianos/farmacologia , Escherichia coliRESUMO
Conductive scaffolds are of great value for constructing functional myocardial tissues and promoting tissue reconstruction in the treatment of myocardial infarction (MI). Here, a novel scaffold composed of silk fibroin and polypyrrole (SP50) with a typical sponge-like porous structure and electrical conductivity similar to the native myocardium is developed. An electroactive engineered cardiac patch (SP50 ECP) with a certain thickness is constructed by applying electrical stimulation (ES) to the cardiomyocytes (CMs) on the scaffold. SP50 ECP can significantly express cardiac marker protein (α-actinin, Cx-43, and cTnT) and has better contractility and electrical coupling performance. Following in vivo transplantation, SP50 ECP shows a notable therapeutic effect in repairing infarcted myocardium. Not only can SP50 ECP effectively improves left ventricular remodeling and restore cardiac functions, such as ejection function (EF), but more importantly, improves the propagation of electrical pulses and promote the synchronous contraction of CMs in the scar area with normal myocardium, effectively reducing the susceptibility of MI rats to arrhythmias. In conclusion, this study demonstrates a facile approach to constructing electroactive ECPs based on porous conductive scaffolds and proves the therapeutic effects of ECPs in repairing the infarcted heart, which may represent a promising strategy for MI treatment.