Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 6039-6048, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507701

RESUMO

Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.


Assuntos
Compostos Orgânicos Voláteis , Purificação da Água , Destilação , Hidrogéis , Membranas Artificiais , Fenol
2.
Ecotoxicol Environ Saf ; 210: 111842, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421717

RESUMO

Microplastics (MPs) and halogenated organic pollutants coexist in ambient water and MPs tend to sorb organic pollutants from surrounding environments. Herein, a study on the sorption behavior of tetrabromobisphenol-A (TBBPA) onto four different MPs, namely, polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC) was carried out. Effects of MPs properties and environmental factors, including the type, surface charge and pore volume as well as the ionic strength (Ca2+) and humic acid (HA) on the sorption of TBBPA were discussed. Results showed that the sorption of TBBPA onto the MPs could reached an equilibrium within 24 h, and the sorption capacities decreased in the following order -PVC (101.85 mg kg-1) >PS (78.95 mg kg-1) >PP (58.57 mg kg-1) >PE (49.43 mg kg-1). Adsorption kinetics data fitted by intraparticle diffusion model revealed both surface sorption and intraparticle diffusion contributed, in the interfacial diffusion stage approximately 11-29% of TBBPA slowly diffused onto the surface of the MPs, and finally, in the intraparticle diffusion stage. The increase of Ca2+ concentration could promote the sorption of TBBPA by PE, PP, and PS, but no significant alteration for PVC. For all the four MPs, HA was found to exert a negative effect on TBBPA sorption. The adsorption was mainly driven by hydrophobic partition and electrostatic interactions.


Assuntos
Retardadores de Chama , Microplásticos/química , Bifenil Polibromatos/química , Poluentes Químicos da Água/química , Adsorção , Difusão , Interações Hidrofóbicas e Hidrofílicas , Cinética , Eletricidade Estática
3.
Heliyon ; 9(11): e22196, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045147

RESUMO

Background: Charcot-Marie-Tooth type 1A (CMT1A), the most frequent type of Charcot-Marie-Tooth disease, is mainly caused by a 1.4-Mb duplication containing the PMP22 gene. There is no effective treatment other than general supportive care and symptomatic treatment. Preimplantation genetic testing for monogenic defects (PGT-M) is an alternative approach for obtaining healthy babies. Methods: A new technology and analysis method based on next-generation sequencing (NGS) was developed to detect duplication mutations directly. Simultaneously, aneuploidy and linkage analyses were performed to achieve a comprehensive and accurate embryo diagnosis. Results: Eight couples were recruited in this study; PMP22 duplication was validated in seven couples, and PMP22 splicing mutation was found in one. Forty-five embryos from 12 PGT cycles were successfully detected using this novel method. The direct detection results for all embryos were consistent with the linkage analyses, suggesting a 100 % accuracy rate, and the aneuploidy rate of the biopsied blastocysts was 33.3 %. Eventually, 18 of the 45 diagnosed embryos were deemed suitable for transfer. Four healthy babies from three families were delivered and their genetic status confirmed by amniocentesis. Additionally, there were no adverse effects of anesthesia or increased pregnancy complications during PGT-M in female patients with CMT1A. Conclusions: This study provided a simple, reliable, and efficient method that can directly detect PMP22 mutations based on NGS data and does not require positive family members. A clinical workflow for CMT1A interruption in the offspring before embryo implantation is also summarized.

4.
Environ Pollut ; 301: 118991, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35157933

RESUMO

The presence of microplastics (MPs) and the associated organic pollutants in the aquatic environment has attracted growing concern in recent years. MPs could compete with chemicals for adsorption sites on the surface of sediment, affecting the sorption processes of pollutants on sediment. However, few studies focused on the binary system of microplastics-sediment (MPs-S), which appear much common in aquatic environment. Herein, we investigated the interactions between a continuously used flame retardant tetrabromobisphenol A (TBBPA) and four MPs-S complexes (PVC-S, PE-S, PP-S and PS-S). The equilibrium adsorption capacities were 17.1, 15.6, 15.4, and 14.0 mg/kg for PVC-S, PS-S, PE-S, and PP-S, respectively. Kinetics suggest that adsorption behavior of TBBPA was fitted by pseudo-second-order model. Co-adsorption of TBBPA in binary systems were much lower than the sum of each simple system, which may be due to the mutually occupied adsorption sites. Higher ionic strength and lower dissolved organic matter strengthened the sorption of TBBPA onto MPs-S complexes. The enhanced sorption capacities for TBBPA were observed with elevated proportion and small particle size of MPs in the MPs-S complexes. This study contributes to the knowledge on the impact of MPs in partitioning of organic pollutants in-between solid and aqueous phases in the aquatic environment.


Assuntos
Bifenil Polibromatos , Poluentes Químicos da Água , Adsorção , Microplásticos , Plásticos/química , Poluentes Químicos da Água/análise
5.
Infect Drug Resist ; 14: 2957-2963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349531

RESUMO

BACKGROUND: Campylobacter rectus is one of the anaerobic bacteria in the mouth. CASE PRESENTATION: We report the case of a 73-year-old man admitted for lung abscess caused by Campylobacter rectus with unique manifestations under electronic bronchoscopy, and the pathogen is first reported to be confirmed by metagenomic next-generation sequencing (mNGS) through testing bronchoalveolar lavage fluid. CONCLUSION: Sometimes, Campylobacter rectus can cause infection outside the mouth such as lung abscess. Most patients have good outcomes.

6.
ACS Appl Bio Mater ; 4(10): 7542-7553, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35006699

RESUMO

Photodynamic inactivation (PDI) has become an appealing alternative strategy to treat infections without developing resistance to microbes. In PDI treatment, near-infrared (NIR) light is preferred because it causes less damage to normal tissues and leads to better penetration in deep tissues. Here, we develop an NIR-responsive nanomedicine for efficient broad-spectrum antimicrobial photodynamic treatment. By harnessing the biosynthetic capability of a bacterial cellulose-producing microorganism, we construct a nanocomposite biomaterial to deliver and recycle the nanomedicine. Our simple one-step biosynthetic approach does not impede the antimicrobial potency of the nanomedicine under NIR activation and requires no chemical modification. The resulting nanocomposite has been tested in antimicrobial treatment of different microorganisms, exhibiting a great potential to eliminate pathogens in biofilms and to treat in vivo infections.


Assuntos
Anti-Infecciosos , Nanocompostos , Fotoquimioterapia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia , Biofilmes , Nanocompostos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA