RESUMO
The utilization of steel slag for CO2 sequestration is an effective way to reduce carbon emissions. The reactivity of steel slag in CO2 sequestration depends mainly on material and process parameters. However, there are many puzzles in regard to practical applications due to the different evaluations of process parameters and the lack of investigation of material parameters. In this study, 318 samples were collected to investigate the interactive influence of 12 factors on the carbonation reactivity of steel slag by machine learning with SHapley Additive exPlanations (SHAP). Multilayer perceptron (MLP), random forest, and support vector regression models were built to predict the slurry-phase CO2 sequestration of steel slag. The MLP model performed well in terms of prediction ability and generalization with comprehensive interpretability. The SHAP results showed that the impact of the process parameters was greater than that of the material parameters. Interestingly, the iron ore phase of steel slag was revealed to have a positive effect on steel slag carbonation by SHAP analysis. Combined with previous literature, the carbonation mechanism of steel slag was proposed. Quantitative analysis based on SHAP indicated that steel slag had good carbonation reactivity when the mass fractions of "CaO + MgO", "SiO2 + Al2O3", "Fe2O3", and "MnO" varied from 50-55%, 10-15%, 30-35%, and <5%, respectively.
Assuntos
Dióxido de Carbono , Resíduos Industriais , Resíduos Industriais/análise , Dióxido de Carbono/análise , Aço , Dióxido de Silício , Carbonatos , Aprendizado de MáquinaRESUMO
The selectivity of chemotherapeutic agents for liver cancer is poor. When they kill tumour cells, they produce serious adverse reactions in the whole body and multidrug resistance (MDR) is also a major hurdle in liver cancer chemotherapy. Combination therapy is a useful method for overcoming MDR and reducing toxic and side effects. In this study, we developed a long-circulating codelivery system, in which doxorubicin (DOX) and schizandrin A (SchA) are combined against MCF-7/ADR cells. The DOX-SchA long-circulating liposome (DOX-SchA-Lip) was prepared using ammonium sulphate gradient method. The two drugs were co-encapsulated into the distearoyl phosphatidylethanolamine-polyethylene glycol (DSPE-mPEG2000) liposome and the liposome had an average particle size of (100 ± 3.5) nm and zeta electrical potential of (-31.3 ± 0.5) mV. The average encapsulation rate of DOX was 97.98% and that of SchA was 86.94%. DOX in liposome had good sustained-release effect. The results showed that DOX-SchA-Lip could significantly prolong the half-life (t1/2z) of the DOX and SchA, increase their circulation time in vivo, improve its bioavailability and reduce their side effects. Liposome can effectively induce early apoptosis of HepG2/ADR cells and the cell cycle was blocked in S-phase by DOX-SchA-Lip in a dose-dependent manner. The IC50 of compound liposome to HepG2 and HepG2/ADR were 0.55 µmol/L and 1.38 µmol/L, respectively, which could significantly reverse the resistance of HepG2/ADR and the reversion multiple was 30.28. It was verified that DOX-SchA-Lip can effectively kill tumour cells and reverse MDR.
Assuntos
Lipossomos , Neoplasias Hepáticas , Linhagem Celular Tumoral , Ciclo-Octanos , Doxorrubicina/farmacocinética , Resistencia a Medicamentos Antineoplásicos , Humanos , Lignanas , Lipossomos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Compostos PolicíclicosRESUMO
Abscisic acid (ABA) plays an important regulatory role in plants. It is very critical to obtain the dynamic changes of ABA in situ for botanical research. Herein, coupled with paper-based analysis devices, electrochemical immunoelectrodes based on disposable stainless steels sheet were developed for ABA detection in plants in situ. The stainless steel sheets were modified with carbon cement, ferrocene-graphene oxide-multi walled carbon nanotubes nanocomposites, and ABA antibodies. The system can detect the ABA in the range of 1 nM to 100 µM, with a limit of detection of 100 pM. The ABA content in tomato leaves under high salinity was detected in situ. The trend of ABA changes was similar to the expression of SlNCED1 and SlNCED2. Overall, this study offers an approach for in situ detection of ABA in plants, which will help to study the regulation mechanism of ABA in plants and to promote the development of precision agriculture.
Assuntos
Ácido Abscísico , Técnicas Biossensoriais , Técnicas Eletroquímicas , Folhas de Planta , Solanum lycopersicum , Aço Inoxidável , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Aço Inoxidável/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Imunoensaio/métodos , Imunoensaio/instrumentaçãoRESUMO
Tissue engineering shows promise in repairing extensive bone defects. The promotion of proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by biological scaffolds has a significant impact on bone regeneration outcomes. In this study we used an injectable hydrogel, known as aminated mesoporous silica gel composite hydrogel (MSNs-NH2@GelMA), loaded with a natural drug, processed pyritum (PP), to promote healing of bone defects. The mechanical properties of the composite hydrogel were significantly superior to those of the blank hydrogel. In vitro experiments revealed that the composite hydrogel stimulated the osteogenic differentiation of BMSCs, and significantly increased the expression of type I collagen (Col 1), runt-related transcription factor 2 (Runx 2), alkaline phosphatase (ALP), osteocalcin (OCN). In vivo experiments showed that the composite hydrogel promoted the generation of new bones. These findings provide evidence that the composite hydrogel pyritum-loaded holds promise as a biomaterial for bone repair.
Assuntos
Regeneração Óssea , Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Animais , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Dióxido de Silício/química , Dióxido de Silício/farmacologiaRESUMO
Existing bone tissue engineering strategies aim to achieve minimize surgical trauma, stabilize the injured area, and establish a dynamic osteogenic microenvironment. The cutting-edge bone glue developed in this study satisfies these criteria. Inspired by the excellent adhesive properties of mussels, herein, a super osteogenic glue (L-DPZ) that integrates poly(vinyl alcohol), L-dopa amino acid, and zeolitic imidazolate framework-8 characterized by catechol-metal coordination is used to successfully adhere to hard tissue with a maximum adhesive strength of 10 MPa, which is much higher than those of commercial and previously reported bone glues. The stable hard tissue adhesion also enables it to adhere strongly to luxated or broken teeth, Bio-Oss (a typical bone graft material), and splice fragments from comminuted fractures of the rabbit femur. Then, it is testified that the L-DPZ hydrogels exhibit satisfactory biocompatibility, stable degradability, and osteogenic ability in vitro. Moreover, the ability to anchor Bio-Oss and sustained osteogenesis of L-DPZ result in satisfactory healing in calvarial bone defect models in rabbits, as observed by increased bone thickness and the ingrowth of new bone tissue. These results are expected to demonstrate solutions to clinical dilemmas such as comminuted bone fracture fixation, bone defect reconstruction, and teeth dislocation replantation.
Assuntos
Cimentos Ósseos , Regeneração Óssea , Animais , Coelhos , Aderências Teciduais , MineraisRESUMO
OBJECTIVE: To prepare xanthatin (XA)-loaded polydopamine (PDA) nanoparticles (PDA-XA-NPs) and to investigate their adhesion and bioavailability. MATERIALS AND METHODS: PDA-XA-NPs were synthesized and characterized using transmission electron microscopy, zeta potential analysis and encapsulation efï¬ciency analysis. Their in vitro release kinetics and inhibitory effects on gastric cancer were studied. The adhesion of PDA-XA-NPs was evaluated by in vivo imaging atlas. The pharmacokinetics of PDA-XA-NPs and XA was compared. RESULTS: PDA-XA-NPs had a spherical shape, a particle size of about 380 nm, an encapsulation efficiency of (82.1 ± 0.02) % and a drug loading capacity of (5.5 ± 0.1)%. The release of PDA-XA-NPs in PBS was stable and slow, without being affected by pH. The adhesion capacity of PDA-XA-NPs for mucin was significantly higher than that of bulk drug. The gastric mucosal retention of PDA-XA-NPs reached 89.1% which significantly exceeded that of XA. In vivo imaging showed that PDA-XA-NPs targeting the stomach were retained for a period of time. The pharmacokinetics study showed that PDA-XA-NPs had a longer retention time and a slower drug release than those of XA. In vitro experiments confirmed that PDA-XA-NPs exerted similar inhibitory effects on gastric cancer to those of XA, which lasted for a period of time. CONCLUSION: High-adhesion NPs were constructed. Gastric cancer was targeted by orally administered PDA-XA-NPs, as a potentially feasible therapy. Eventually, the bioavailability of XA was increased.
Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Furanos/farmacocinética , Nanopartículas/química , Neoplasias Gástricas/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/química , Disponibilidade Biológica , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Furanos/química , Mucosa Gástrica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Indóis/química , Masculino , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Nanopartículas/metabolismo , Tamanho da Partícula , Polímeros/química , Ratos Sprague-Dawley , Neoplasias Gástricas/patologiaRESUMO
Nanoparticles (NPs) can be taken up by cells; however, the effects of the structural characteristics of NPs on their cellular internalization have not been well explored. In this work, cellular internalization performances of various NPs including rods with helical surface (helical rods), spheres with stripe-pattern surface (striped spheres), and spheres with smooth surface (smooth spheres) were investigated by a combination of experiments and theoretical simulations. This study focuses on the effects of the size, shape, and surface morphology on their cellular internalization behaviors. These NPs were self-assembled from mixtures of fluorescein isothiocyanate (FITC)-labelled poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) (PBLG(FITC)-b-PEG) block copolymers and PBLG or polystyrene (PS) homopolymers. It was found that the NPs possessing smaller size, rod-like shape, and helical/striped surface morphology exhibit higher cellular internalization efficiency. Such differences in the internalization efficiency for the NPs can be attributed to the differences in both their surface areas and internalization pathways. This study could not only guide the design of nanocarriers with enhanced cellular internalization efficiency, but also deepen our understanding of the internalization behavior of natural NPs with similar structures (e.g., virus).
Assuntos
Endocitose , Nanopartículas/química , Peptídeos/química , Células 3T3 , Animais , Fluoresceína-5-Isotiocianato/química , Camundongos , Nanopartículas/metabolismo , Polietilenoglicóis/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/químicaRESUMO
Poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) rod-coil block copolymers and poly(γ-benzyl-l-glutamate) (PBLG) homopolymers can cooperatively self-assemble into superhelical structures in aqueous solution. Herein, we discovered that the helices can have multiple strands with tunable characteristics. The strand number was dependent on the initial polymer concentration of the self-assembly, the self-assembly temperature, and the weight fraction of the block copolymers in the mixture. Higher initial polymer concentrations or lower weight fractions of the block copolymers induced the formation of helices with larger diameters and higher strand numbers, and helices prepared at higher temperatures had higher strand numbers. Based on an analysis of the correlation between the geometric parameters of the helices and the strand number, a possible mechanism for the formation of multistranded superhelices is suggested.