Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 609(7929): 954-958, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171378

RESUMO

Molecular studies suggest that the origin of jawed vertebrates was no later than the Late Ordovician period (around 450 million years ago (Ma))1,2. Together with disarticulated micro-remains of putative chondrichthyans from the Ordovician and early Silurian period3-8, these analyses suggest an evolutionary proliferation of jawed vertebrates before, and immediately after, the end-Ordovician mass extinction. However, until now, the earliest complete fossils of jawed fishes for which a detailed reconstruction of their morphology was possible came from late Silurian assemblages (about 425 Ma)9-13. The dearth of articulated, whole-body fossils from before the late Silurian has long rendered the earliest history of jawed vertebrates obscure. Here we report a newly discovered Konservat-Lagerstätte, which is marked by the presence of diverse, well-preserved jawed fishes with complete bodies, from the early Silurian (Telychian age, around 436 Ma) of Chongqing, South China. The dominant species, a 'placoderm' or jawed stem gnathostome, which we name Xiushanosteus mirabilis gen. et sp. nov., combines characters from major placoderm subgroups14-17 and foreshadows the transformation of the skull roof pattern from the placoderm to the osteichthyan condition10. The chondrichthyan Shenacanthus vermiformis gen. et sp. nov. exhibits extensive thoracic armour plates that were previously unknown in this lineage, and include a large median dorsal plate as in placoderms14-16, combined with a conventional chondrichthyan bauplan18,19. Together, these species reveal a previously unseen diversification of jawed vertebrates in the early Silurian, and provide detailed insights into the whole-body morphology of the jawed vertebrates of this period.


Assuntos
Fósseis , Arcada Osseodentária , Vertebrados , Animais , China , Peixes/anatomia & histologia , Peixes/classificação , Arcada Osseodentária/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação
2.
Nature ; 502(7470): 188-93, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24067611

RESUMO

The gnathostome (jawed vertebrate) crown group comprises two extant clades with contrasting character complements. Notably, Chondrichthyes (cartilaginous fish) lack the large dermal bones that characterize Osteichthyes (bony fish and tetrapods). The polarities of these differences, and the morphology of the last common ancestor of crown gnathostomes, are the subject of continuing debate. Here we describe a three-dimensionally preserved 419-million-year-old placoderm fish from the Silurian of China that represents the first stem gnathostome with dermal marginal jaw bones (premaxilla, maxilla and dentary), features previously restricted to Osteichthyes. A phylogenetic analysis places the new form near the top of the gnathostome stem group but does not fully resolve its relationships to other placoderms. The analysis also assigns all acanthodians to the chondrichthyan stem group. These results suggest that the last common ancestor of Chondrichthyes and Osteichthyes had a macromeric dermal skeleton, and provide a new framework for studying crown gnathostome divergence.


Assuntos
Peixes/anatomia & histologia , Peixes/classificação , Fósseis , Arcada Osseodentária/anatomia & histologia , Filogenia , Animais , China , Especificidade da Espécie
3.
Nat Commun ; 14(1): 7622, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993457

RESUMO

Major groups of jawed vertebrates exhibit contrasting conditions of dermal plates and scales. But the transition between these conditions remains unclear due to rare information on taxa occupying key phylogenetic positions. The 425-million-year-old fish Entelognathus combines an unusual mosaic of characters typically associated with jawed stem gnathostomes or crown gnathostomes. However, only the anterior part of the exoskeleton was previously known for this very crownward member of the gnathostome stem. Here, we report a near-complete post-thoracic exoskeleton of Entelognathus. Strikingly, its scales are large and some are rhomboid, bearing distinctive peg-and-socket articulations; this combination was previously only known in osteichthyans and considered a synapomorphy of that group. The presence in Entelognathus of an anal fin spine, previously only found in some stem chondrichthyans, further illustrates that many characters previously thought to be restricted to specific lineages within the gnathostome crown likely arose before the common ancestor of living jawed vertebrates.


Assuntos
Fósseis , Arcada Osseodentária , Animais , Filogenia , Arcada Osseodentária/anatomia & histologia , Vertebrados , Peixes , Evolução Biológica
4.
Curr Biol ; 31(16): 3613-3620.e2, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34146483

RESUMO

The Silurian Period occupies a pivotal stage in the unfolding of key evolutionary events, including the rise of jawed vertebrates.1-4 However, the understanding of this early diversification is often hampered by the patchy nature of the Silurian fossil record,5 with the articulated specimens of jawed vertebrates only known in isolated localities, most notably Qujing, Yunnan, China.6-9 Here, we report a new Silurian maxillate placoderm, Bianchengichthys micros, from the Ludlow of Chongqing, with a near-complete dermatoskeleton preserved in articulation. Although geographically separated, the new taxon resembles the previously reported Qilinyu in possessing a unique combination of dermatoskeletal characters. However, the dermal bone of the mandible in Bianchengichthys unexpectedly differs from those in both Qilinyu and Entelognathus and displays a broad oral lamina carrying a line of tooth-like denticles, in addition to the marginal toothless flange. The external morphology of the pectoral fin is preserved and reveals an extensively scale-covered lobate part, flanked by a fringe of lepidotrichia-like aligned scales. The phylogenetic analysis reveals that Bianchengichthys is positioned immediately below Entelognathus plus modern gnathostomes. The discovery significantly widens the distribution of Silurian placoderm-grade gnathostomes in South China and provides a range of morphological disparity for the outgroup comparison to the earliest evolution of jaws, dentitions, and pectoral fins in modern gnathostomes. We also demonstrate that the previously reported Silurian placoderms from central Vietnam10 are maxillate placoderms close to Qilinyu, Silurolepis, and Bianchengichthys, corroborating the paleogeographic proximity between the Indochina and South China blocks during the Middle Paleozoic.11.


Assuntos
Peixes , Fósseis , Filogenia , Animais , Evolução Biológica , China , Peixes/classificação
5.
Sci Rep ; 4: 5242, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24921626

RESUMO

An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes.


Assuntos
Peixes/anatomia & histologia , Peixes/classificação , Fósseis/anatomia & histologia , Paleontologia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Evolução Biológica , Tamanho Corporal , China , Geografia , Estado Nutricional , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA