Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Prosthodont Res ; 60(1): 47-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589845

RESUMO

PURPOSE: To evaluate the effect of glass fiber/filler particles proportion on flexural strength and diametral tensile strength of an experimental fiber-reinforced composite. METHODS: Four experimental groups (N=10) were created using an experimental short fiber-reinforced composite, having as a factor under study the glass fiber (F) and filler particle (P) proportion: F22.5/P55 with 22.5 wt% of fiber and 55 wt% of filler particles; F25/P52.5 with 25 wt% of fiber and 52.5 wt% of filler particles; F27.5/P50 with 27.5 wt% of fiber and 50 wt% of filler particles; F30/P47.5 with 30 wt% of fiber and 47.5 wt% of filler particles. The experimental composite was made up by a methacrylate-based resin (50% Bis-GMA and 50% TEGDMA). Specimens were prepared for Flexural Strength (FS) (25 mm × 2 mm × 2 mm) and for Diametral Tensile Strength (DTS) (3×6 Ø mm) and tested at 0.5 mm/min in a universal testing machine. RESULTS: The results (in MPa) showed significance (different superscript letters mean statistical significant difference) for FS (p<0.009) and DTS (p<0.001)--FS results: F22.5/P55: 217.24±20.64(B); F25/P52.5: 245.77±26.80(AB); F27.5/P50: 246.88±32.28(AB); F30/P47.5: 259.91±26.01(A). DTS results: F22.5/P55: 21.82±4.42(B); F25/P52.5: 22.00±7.40(B); F27.5/P50: 18.63±4.41(B); F30/P47.5: 31.05±2.97(A). In SEM analysis, areas without fiber reinforcement demonstrated to be more prone to the presence of bubbles and crack development. The group F30/P47.5 showed areas with a great quantity of fibers without empty spaces for crack propagation. CONCLUSION: Increasing fiber content results in higher flexural and diametral tensile strength of an experimental composite reinforced with glass fibers.


Assuntos
Resinas Acrílicas , Resinas Compostas , Materiais Dentários , Análise do Estresse Dentário , Vidro , Poliuretanos , Resistência à Tração , Metacrilatos , Estresse Mecânico
2.
Biomed Res Int ; 2014: 364398, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967361

RESUMO

This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27(BC); P-sil: 155.89 ± 45.27(BC); I-sil/heat: 130.20 ± 22.11(C); P-sil/heat: 169.86 ± 50.29(AB); I: 131.87 ± 15.86(C). For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77(ab); P-sil: 867.61 ± 102.76(d); I-sil/heat: 1162.98 ± 222.07(c); P-sil/heat: 1499.35 ± 339.06(a); and I: 1245.78 ± 211.16(bc). Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/química , Cimentos Dentários/química , Vidro/química , Teste de Materiais/métodos , Metacrilatos/química , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA