Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Polym ; 288: 119373, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450635

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) play a key role in enzymatic conversion of plant cell wall polysaccharides. Continuous discovery and functional characterization of LPMOs highly contribute to the tailor-made design and improvement of hydrolytic-activity based enzyme cocktails. In this context, a new MtLPMO9F was characterized for its substrate (xyloglucan) specificity, and MtLPMO9H was further delineated. Aided by sodium borodeuteride reduction and hydrophilic interaction chromatography coupled to mass spectrometric analysis, we found that both MtLPMOs released predominately C4-oxidized, and C4/C6-double oxidized xylogluco-oligosaccharides. Further characterization showed that MtLPMO9F, having a short active site segment 1 and a long active site segment 2 (-Seg1+Seg2), followed a "substitution-intolerant" xyloglucan cleavage profile, while for MtLPMO9H (+Seg1-Seg2) a "substitution-tolerant" profile was found. The here characterized xyloglucan specificity and substitution (in)tolerance of MtLPMO9F and MtLPMO9H were as predicted according to our previously published phylogenetic grouping of AA9 LPMOs based on structural active site segment configurations.


Assuntos
Celulose , Xilanos , Celulose/química , Glucanos , Filogenia , Polissacarídeos/química , Sordariales , Especificidade por Substrato , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA