RESUMO
OBJECTIVE: To analyze the effect of bioadhesive polymer, Aristoflex® AVC, on enamel physical and chemical properties. MATERIALS AND METHODS: Bovine enamel blocks were divided into CP 10% with carbopol-Whiteness Perfect® (WP-FGM), CP 10% with Aristoflex (A + CP 10%), CP 10% with carbopol (C + CP 10%), Aristoflex (A), carbopol (C), carbamide peroxide 10% (CP 10%) and control (no treatment). The treatment was performed for 4 h during 14 days. The colour (ΔE, ΔL*, Δa* and Δb*), profilometry (Ra) and surface microhardness (KHN) were performed before and after the bleaching treatment. The concentrations of Ca and P were performed on the 1st, 3rd, 7th and 14th days by inductively coupled plasma optical emission spectrometry for the groups WP, A + CP 10%, C + CP 10%, A, C and CP 10% (control without thickener) and the morphology by scanning electron microscopy. RESULTS: All groups with CP 10%, regardless of polymer, differing statistically to ΔE, ΔL*, Δa* and Δb* compared to control group. The group A + CP 10% maintained low values of roughness and microhardness after bleaching. Higher concentration of Ca and P was found in the 1st day of treatment for the WP group compared to the groups A + CP 10% and C + CP 10%. CONCLUSION: The 10% CP associated with the bioadhesive polymer Aristoflex® AVC was effective on the bleaching treatment without changing the physical properties of the dental enamel. Also, this experimental gel caused less mineral loss than the group CP 10% with carbopol (WP-FGM). CLINICAL RELEVANCE: Because the change of Carbopol by Aristoflex, a bioadhesive polymer, does not interfere with the effectiveness of bleaching treatment, it is a promising agent associated to carbamide to maintain the physical properties of enamel after bleaching.