Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Surg Innov ; 31(3): 307-317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606504

RESUMO

BACKGROUND: Reconstructing bone defects in the upper extremities and restoring their functions poses a significant challenge. In this study, we describe a novel workflow for designing and manufacturing customized bone cement molds using 3D printing technology to reconstruct upper extremity defects after bone tumor resection. METHODS: Computer tomography data was acquired from the unaffected upper extremities to create a detachable mold, which can be customized to fit the joint precisely by shaping the bone cement accordingly. Fourteen patients who underwent reconstructive surgery following bone tumor resection in the proximal humerus (13 cases) or distal radius (1 case) between January 2014 and December 2022 were retrospectively evaluated. The medical records of this case series were reviewed for the demographic, radiological, and operative data. Metastasis, local recurrence, and complication were also reviewed. Additionally, Musculoskeletal Tumor Society Score (MSTS) and Visual Analogue Scale (VAS) were used to assess clinical outcomes. RESULTS: The mean follow-up period was 49.36 ± 15.18 months (range, 27-82 months). At the end of follow-up, there were no cases of metastasis or recurrence, and patients did not experience complications such as infection, dislocation, or implant loosening. Two cases complicated with subluxation (14.3%), and 1 case underwent revision surgery for prosthetic fracture (7.1%). The average MSTS score was 23.2 ± 1.76 (77.4%, range, 66.7%-86.7%), and the postoperative VAS score was 1.86 ± 1.03 (range, 1-4), which was significantly lower than that before surgery (average preoperative VAS score was 5.21 ± 2.00 (range, 2-8)) (P < .001). CONCLUSION: Customized 3D molds can be utilized to shape bone cement prostheses, which may serve as a potential alternative for reconstructing the proximal humerus and distal radius following en bloc resection of bone tumors. This reconstruction strategy offers apparent advantages, including precise matching of articular surfaces and comparatively reduced costs.


Assuntos
Cimentos Ósseos , Neoplasias Ósseas , Procedimentos de Cirurgia Plástica , Impressão Tridimensional , Humanos , Cimentos Ósseos/uso terapêutico , Neoplasias Ósseas/cirurgia , Feminino , Masculino , Procedimentos de Cirurgia Plástica/métodos , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Extremidade Superior/cirurgia , Rádio (Anatomia)/cirurgia , Adulto Jovem , Úmero/cirurgia , Adolescente , Idoso , Tomografia Computadorizada por Raios X
2.
BMC Oral Health ; 24(1): 80, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218801

RESUMO

BACKGROUND: The aim of this study is to conduct a comparative evaluation of different designs of clear aligners and examine the disparities between clear aligners and fixed appliances. METHODS: 3D digital models were created, consisting of a maxillary dentition without first premolars, maxilla, periodontal ligaments, attachments, micro-implant, 3D printed lingual retractor, brackets, archwire and clear aligner. The study involved the creation of five design models for clear aligner maxillary anterior internal retraction and one design model for fixed appliance maxillary anterior internal retraction, which were subsequently subjected to finite element analysis. These design models included: (1) Model C0 Control, (2) Model C1 Posterior Micro-implant, (3) Model C2 Anterior Micro-implant, (4) Model C3 Palatal Plate, (5) Model C4 Lingual Retractor, and (6) Model F0 Fixed Appliance. RESULTS: In the clear aligner models, a consistent pattern of tooth movement was observed. Notably, among all tested models, the modified clear aligner Model C3 exhibited the smallest differences in sagittal displacement of the crown-root of the central incisor, vertical displacement of the central incisor, sagittal displacement of the second premolar and second molar, as well as vertical displacement of posterior teeth. However, distinct variations in tooth movement trends were observed between the clear aligner models and the fixed appliance model. Furthermore, compared to the fixed appliance model, significant increases in tooth displacement were achieved with the use of clear aligner models. CONCLUSIONS: In the clear aligner models, the movement trend of the teeth remained consistent, but there were variations in the amount of tooth displacement. Overall, the Model C3 exhibited better torque control and provided greater protection for posterior anchorage teeth compared to the other four clear aligner models. On the other hand, the fixed appliance model provides superior anterior torque control and better protection of the posterior anchorage teeth compared to clear aligner models. The clear aligner approach and the fixed appliance approach still exhibit a disparity; nevertheless, this study offers a developmental direction and establishes a theoretical foundation for future non-invasive, aesthetically pleasing, comfortable, and efficient modalities of clear aligner treatment.


Assuntos
Procedimentos de Ancoragem Ortodôntica , Aparelhos Ortodônticos Removíveis , Humanos , Incisivo , Análise de Elementos Finitos , Desenho de Aparelho Ortodôntico , Aparelhos Ortodônticos Fixos , Técnicas de Movimentação Dentária
3.
Biomacromolecules ; 24(6): 2501-2511, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37129908

RESUMO

Poly(glycerol-dodecanoate) (PGD) has garnered increasing attention in biomedical engineering for its degradability, shape memory, and rubber-like mechanical properties. Adjustable degradation is important for biodegradable implants and is affected by various aspects, including material properties, mechanical environments, temperature, pH, and enzyme catalysis. The crosslinking and chain length characteristics of poly(lactic acid) and poly(caprolactone) have been widely used to adjust the in vivo degradation rate. The PGD degradation rate is affected by its crosslink density in in vitro hydrolysis; however, there is no difference in vivo. We believe that this phenomenon is caused by the differences in enzymatic conditions in vitro and in vivo. In this study, it is found that the degradation products of PGD with different molar ratios of hydroxyl and carboxyl (MRH/C) exhibit varied pH values, affecting the enzyme activity and thus achieving different degradation rates. The in vivo degradation of PGD is characterized by surface erosion, and its mass decreases linearly with degradation duration. The degradation duration of PGD is linearly extrapolated from 9-18 weeks when MRH/C is in the range of 2.00-0.75, providing a protocol for adjusting the degradation durations of subsequent implants made by PGD.


Assuntos
Materiais Biocompatíveis , Glicerol , Materiais Biocompatíveis/química , Glicerol/química , Controle Comportamental , Poliésteres/química
4.
Cell Mol Life Sci ; 79(11): 551, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36244032

RESUMO

Periodontal ligament (PDL) cells are a promising tool for periodontal regeneration therapy. Achieving a sufficient number of PDL cells is essential to PDL regeneration. In our study, appropriate flow shear stress (FSS, 1-6 dyn/cm2) promotes the proliferation of PDL cells. FSS remodels cytoskeleton and focal adhesion in a duration-dependent manner. FSS induces PDL cells to form the actin cap within 10 min, flattens the nuclei, and increases the nuclear pore size, which promotes nuclear translocation of Yes-associated protein (YAP). FSS activates p38, which plays a dual function in YAP regulation. p38 regulates the phosphorylation of Akt and cofilin, as well as induced F-actin polymerization to induce YAP activity. In addition, p38 inhibits pLATS and consecutively regulates angiomotin (AMOT) and YAP phosphorylation. AMOT competitively binds to F-actin and YAP to participate in FSS-mediated YAP nuclear translocation and cell proliferation. Taken collectively, our results provide mechanistic insights into the role of p38-AMOT-YAP in FSS-mediated PDL cells proliferation and indicate potential applications in dental regenerative medicine.


Assuntos
Actinas , Ligamento Periodontal , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Angiomotinas , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Sinalização YAP
5.
Int Endod J ; 56(1): 92-102, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36229421

RESUMO

AIM: Calcium hydroxide is the gold standard material for pulp capping and has been widely used in clinical dentistry. Calcium hydroxide promotes proliferation, migration and osteogenic differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanism is not clear. Our study investigated the role of Wnt/ß-catenin pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation and mineralization of human DPSCs. METHODOLOGY: Protein and gene expression was detected by western blot (WB), immunofluorescence staining and quantitative real-time PCR (qPCR). Cell viability was analysed using the Cell Counting Kit-8 (CCK-8) assay. Wound-healing assay was used to analyse cell migration. The expression of alkaline phosphatase (ALP) was detected using ALP staining. Mineralization was analysed by alizarin red staining. RESULTS: Calcium hydroxide increased the protein expression of phosphorylated-GSK3ß/GSK3ß, ß-catenin and the gene expression of LEF-1. Inhibition of Wnt/ß-catenin abolished calcium hydroxide-induced proliferation and migration of DPSCs in 24 h. However, incubation with calcium hydroxide for 7 days and 14 days reduced Wnt/ß-catenin signalling. Inhibition of Wnt/ß-catenin promoted calcium hydroxide-induced osteogenic differentiation and mineralization in DPSCs. CONCLUSION: Wnt/ß-catenin pathway plays a dual role in calcium hydroxide-regulated DPSC behaviour. Incubation with calcium hydroxide promoted rapid proliferation and migration of DPSCs, while prolonged incubation negatively regulated osteogenic differentiation and mineralization.


Assuntos
Osteogênese , beta Catenina , Humanos , Hidróxido de Cálcio/farmacologia , Polpa Dentária , Diferenciação Celular , Proliferação de Células , Células-Tronco
6.
Am J Orthod Dentofacial Orthop ; 163(1): e1-e12, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435687

RESUMO

INTRODUCTION: This study aimed to analyze the biomechanical effects of the combined use of clear aligners (CA) and auxiliaries (precision cuts, lingual buttons, and patient-specific attachments) on mesial tipping and extrusion of the premolars during maxillary molars distalization. METHODS: Three-dimensional finite element method was employed to simulate clinical scenarios of CA with different auxiliaries for molar distalization. As such, 200 g of distal force was applied to the microimplants from the notches, lingual buttons, and hooks. Orthodontic tooth movement and the hydrostatic pressure in the periodontal ligament were compared. RESULTS: Adding auxiliaries can provide the maxillary arch anchorage and promote the distal tipping of premolars and retroclination of maxillary incisors. In contrast, this effect was more pronounced in patient-specific attachment applications than in other types of auxiliaries. The independent application of the CA caused mesial tipping and extrusion of the premolar and also caused the incisor proclination. CONCLUSIONS: The anchorage loss caused by the CA alone could be alleviated with the assistance of auxiliaries. Notably, patient-specific attachments further reinforce the anchorage of the anterior arch by incorporating anchor teeth as 1 anchorage unit.


Assuntos
Dente Molar , Aparelhos Ortodônticos Removíveis , Humanos , Análise de Elementos Finitos , Maxila , Dente Pré-Molar/cirurgia , Técnicas de Movimentação Dentária/métodos
7.
BMC Oral Health ; 23(1): 416, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349701

RESUMO

BACKGROUND: Controlling the 3D movement of central incisors during tooth extraction cases with clear aligners is important but challenging in invisible orthodontic treatment. This study aimed to explore the biomechanical effects of central incisors in tooth extraction cases with clear aligners under different power ridge design schemes and propose appropriate advice for orthodontic clinic. METHODS: A series of Finite Element models was constructed to simulate anterior teeth retraction or no retraction with different power ridge designs. These models all consisted of maxillary dentition with extracted first premolars, alveolar bone, periodontal ligaments and clear aligner. And the biomechanical effects were analysed and compared in each model. RESULTS: For the model of anterior teeth retraction without power ridge and for the model of anterior teeth no retraction with a single power ridge, the central incisors exhibited crown lingual inclination and relative extrusion. For the model of anterior teeth no retraction with double power ridges, the central incisors tended to have crown labial inclination and relative intrusion. For the model of anterior tooth retraction with double power ridges, the central incisors exhibited a similar trend to the first kind of model, but as the depth of the power ridge increased, there was a gradual decrease in crown retraction value and an increase in crown extrusion value. The simulated results showed that von-Mises stress concentration was observed in the cervical and apical regions of the periodontal ligaments of the central incisors. The clear aligner connection areas of adjacent teeth and power ridge areas also exhibited von-Mises stress concentration and the addition of power ridge caused the clear aligner to spread out on the labial and lingual sides. CONCLUSIONS: The central incisors are prone to losing torque and extruding in tooth extraction cases. Double power ridges have a certain root torque effect when there are no auxiliary designs, but they still cannot rescue tooth inclination during tooth retraction period. For tooth translation, it may be a better clinical procedure to change the one-step aligner design to two-step process: tilting retraction and root control.


Assuntos
Incisivo , Aparelhos Ortodônticos Removíveis , Humanos , Fios Ortodônticos , Dente Canino , Maxila , Extração Dentária , Técnicas de Movimentação Dentária/métodos , Análise de Elementos Finitos
8.
J Prosthodont ; 32(3): e30-e40, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35950785

RESUMO

PURPOSE: To compare and evaluate density changes in alveolar bones and biomechanical responses including stress/strain distributions around customized root implants (CRIs), traditional implants, and natural teeth. MATERIALS AND METHODS: A three-dimensional finite element model of the maxillary dentition defect, CRI models, traditional restored implant models, and natural teeth with periodontal tissue models were established. The chewing load of the central incisor, the traditional implant, and the CRI was 100N, and the load direction was inclined by 11° in the sagittal plane. According to the bone remodeling numerical algorithm, the bone mineral density and distribution were calculated and predicted. In addition, animal experiments were performed to verify the feasibility of the implant design. The results of the simulation calculations were compared with animal experimental data in vivo to verify their validity. RESULTS: No significant differences in bone mineral density and stress/strain distribution were found between the CRI and traditional implant models. The animal experimental results (X-ray images and histological staining) were consistent with the numerical simulated results. CONCLUSIONS: CRIs were more similar to traditional implants than to natural teeth in terms of biomechanical and biological evaluation. Considering the convenience of clinical application, this biomechanical evaluation provides basic theoretical support for further applications of CRI.


Assuntos
Implantes Dentários , Estresse Mecânico , Simulação por Computador , Análise de Elementos Finitos , Fenômenos Biomecânicos , Análise do Estresse Dentário/métodos
9.
BMC Oral Health ; 22(1): 557, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456929

RESUMO

OBJECTIVE: Additively manufactured (3D-printed) titanium meshes have been adopted in the dental field as non-resorbable membranes for guided bone regeneration (GBR) surgery. However, according to previous studies, inaccuracies between planned and created bone volume and contour are common, and many reasons have been speculated to affect its accuracy. The size of the alveolar bone defect can significantly increase patient-specific titanium mesh design and surgical difficulty. Therefore, this study aimed to analyze and investigate the effect of bone defect size on the 3D accuracy of alveolar bone augmentation performed with additively manufactured patient-specific titanium meshes. METHODS: Twenty 3D-printed patient-specific titanium mesh GBR surgery cases were enrolled, in which 10 cases were minor bone defect/augmentation (the planned bone augmentation surface area is less than or equal to 150 mm2 or one tooth missing or two adjacent front-teeth/premolars missing) and another 10 cases were significant bone defect/augmentation (the planned bone augmentation surface area is greater than 150 mm2 or missing adjacent teeth are more than two (i.e. ≥ three teeth) or missing adjacent molars are ≥ two teeth). 3D digital reconstruction/superposition technology was employed to investigate the bone augmentation accuracy of 3D-printed patient-specific titanium meshes. RESULTS: There was no significant difference in the 3D deviation distance of bone augmentation between the minor bone defect/augmentation group and the major one. The contour lines of planned-CAD models in two groups were basically consistent with the contour lines after GBR surgery, and both covered the preoperative contour lines. Moreover, the exposure rate of titanium mesh in the minor bone defect/augmentation group was slightly lower than the major one. CONCLUSION: It can be concluded that the size of the bone defect has no significant effect on the 3D accuracy of alveolar bone augmentation performed with the additively manufactured patient-specific titanium mesh.


Assuntos
Anodontia , Implantes Dentários , Má Oclusão , Perda de Dente , Humanos , Titânio , Telas Cirúrgicas
10.
J Cell Physiol ; 236(10): 6897-6906, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33650160

RESUMO

Vascular stiffening, an early and common characteristic of cardiovascular diseases (CVDs), stimulates vascular smooth muscle cell (VSMC) proliferation which reciprocally accelerates the progression of CVDs. However, the mechanisms by which extracellular matrix stiffness accompanying vascular stiffening regulates VSMC proliferation remain largely unknown. In the present study, we examined the role of the intermediate-conductance Ca2+ -activated K+  (IKCa ) channel in the matrix stiffness regulation of VSMC proliferation by growing A7r5 cells on soft and stiff polydimethylsiloxane substrates with stiffness close to these of arteries under physiological and pathological conditions, respectively. Stiff substrates stimulated cell proliferation and upregulated the expression of the IKCa channel. Stiff substrate-induced cell proliferation was suppressed by pharmacological inhibition using TRAM34, an IKCa channel blocker, or genetic depletion of the IKCa channel. In addition, stiff substrate-induced cell proliferation was also suppressed by reducing extracellular Ca2+ concentration using EGTA or intracellular Ca2+ concentration using BAPTA-AM. Moreover, stiff substrate induced activation of extracellular signal-regulated kinases (ERKs), which was inhibited by treatment with TRAM34 or BAPTA-AM. Stiff substrate-induced cell proliferation was suppressed by treatment with PD98059, an ERK inhibitor. Taken together, these results show that substrates with pathologically relevant stiffness upregulate the IKCa channel expression to enhance intracellular Ca2+ signaling and subsequent activation of the ERK signal pathway to drive cell proliferation. These findings provide a novel mechanism by which vascular stiffening regulates VSMC function.


Assuntos
Sinalização do Cálcio , Proliferação de Células , Dimetilpolisiloxanos/química , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Mecanotransdução Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Ratos
11.
Dermatol Surg ; 46(2): 249-257, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569112

RESUMO

BACKGROUND: Varicose veins are common clinical entities. Foam sclerotherapy is a minimally invasive and simple procedure; however, the side effects, efficacy, and stability of sclerosing foam are not ideal. OBJECTIVE: To summarize the current studies on sclerosing foam stability and promote foam sclerotherapy development. MATERIALS AND METHODS: We reviewed the literature before June 2018 and included only representatives studies on sclerosing foam stability. We summarized the foam half-life time (FHT) of polidocanol (POL) under 17 preparation conditions and the FHT of sodium tetradecyl sulfate under 21 preparation conditions. The preparation conditions included various combinations of temperature, liquid-gas ratio, preparation method, etc. RESULTS: The FHT of POL varied between 40 and 4,000 seconds under different conditions. The FHT of sodium tetradecyl sulfate varied from 25.7 to 390 seconds. The higher the drug concentration, the lower the temperature required to increase foam stability. The addition of surfactant greatly increased foam stability. For different gas compositions, the FHT sequence was as follows: CO2 < CO2 + O2 < O2 < air. CONCLUSION: Foam stability can be improved by changing the preparation conditions; therefore, the role of surfactants and predictive methods for FHT are worth investigating further.


Assuntos
Gases/farmacocinética , Soluções Esclerosantes/farmacocinética , Escleroterapia/métodos , Tensoativos/farmacocinética , Varizes/terapia , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Gases/administração & dosagem , Gases/química , Meia-Vida , Humanos , Injeções Intravenosas , Polidocanol/administração & dosagem , Polidocanol/química , Polidocanol/farmacocinética , Soluções Esclerosantes/administração & dosagem , Soluções Esclerosantes/química , Tetradecilsulfato de Sódio/administração & dosagem , Tetradecilsulfato de Sódio/química , Tetradecilsulfato de Sódio/farmacocinética , Tensoativos/administração & dosagem , Tensoativos/química , Temperatura , Fatores de Tempo
12.
J Vasc Surg ; 69(2): 581-591.e1, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29954633

RESUMO

OBJECTIVE: This article compares the effect of different surfactants on foam stability and determines the foam decay relationship, so that the suitability of surfactants in a clinical setting can be evaluated. METHODS: Five different surfactants were used to prepare sclerosing foam at room temperature using a liquid:gas ratio of 1:4 in vitro. Foam decay experiments were performed for each sample using a laboratory-made foaming apparatus, and the process was recorded using a video camera. The stability indices used included the drainage time, drainage rate, half-life, foam half-life volume, surfactant stability index, and foaming index. RESULTS: The sodium morrhuate foam was relatively more stable than the polidocanol foam, but exhibited weak foaming. After the addition of the surfactants, the foam half-life was less than 300 seconds. The effect of the surfactants on the stability of the sodium morrhuate foam was more pronounced. The surfactant stability indices could be arranged as follows: poloxamer 188 > Tween 80 > macrogol 4000 > propanediol > lecithin. However, the differences in the foaming indices were small. CONCLUSIONS: Of the five surfactants tested, poloxamer 188 has best performance to enhance sclerosing foam stability. The addition of the surfactants improved the stability of the sclerosing foams. It was observed that the relationships between the foam half-life and the surfactant stability index and the surfactant concentration follow the power law.


Assuntos
Poloxâmero/química , Soluções Esclerosantes/química , Escleroterapia/métodos , Tensoativos/química , Estabilidade de Medicamentos , Meia-Vida , Humanos , Lecitinas/química , Polietilenoglicóis/química , Polissorbatos/química , Propilenoglicóis/química , Fatores de Tempo , Gravação em Vídeo
13.
J Clin Pediatr Dent ; 42(4): 314-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29750631

RESUMO

INTRODUCTION: The aim of commencing treatment in younger age is to rectify the developing dento-alveolar, skeletal and muscular imbalances. With growing dependence on arch development and expansion, the pendulum is oscillating more towards the non-extraction treatment lately, in resolving constriction and crowding issues. Since, a limited number of attempts have been made for mandibular expansion, this study aimes to evaluate the effect of different modes and sites of loading on the expansion of preadolescent mandible using biomechanics. STUDY DESIGN: To address the research purpose, a total of 9 Finite Element models were simulated. Biomechanical response of the mandibular bone and dentition was analyzed under different loading conditions including site and mode, using the simulated FE models. RESULTS: The values of displacement envisaged by the FE models, predict hybrid mode to offer substantial expansion of the mandibular bone as compared to tooth borne and bone borne. In addition, biomechanical effect of site II on mandibular expansion in terms of displacement on X-axis, was significant. CONCLUSION: In conclusion, the results of our study suggest hybrid mode at site II to be better option for true bony expansion in preadolescent mandible.


Assuntos
Arco Dental , Má Oclusão/terapia , Mandíbula , Ortodontia Corretiva/métodos , Fenômenos Biomecânicos , Criança , Simulação por Computador , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional
14.
Am J Orthod Dentofacial Orthop ; 151(4): 767-778, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28364901

RESUMO

INTRODUCTION: Surgically assisted mandibular arch expansion is an effective treatment modality for alleviating constriction and crowding. However, only mandibular symphyseal osteotomy is recommended for mandibular arch expansion. No relevant studies have compared the biomechanical responses of different corticotomy designs on mandibular expansion. Therefore, the aim of this study was to evaluate the effect of different corticotomy approaches and modes of loading on the expansion of adult mandibles using biomechanics. METHODS: Nine finite element models including 2 novel corticotomy designs were simulated. Stress, strain, and displacement of crown, root, and bone were calculated and compared under different corticotomy approaches and loading conditions. RESULTS: The biomechanical response seen in the finite element models in terms of displacement on the x-axis was consistent from anterior to posterior teeth with parasymphyseal step corticotomy and tooth-borne force application. In addition, the amount of displacement predicted by parasymphyseal step corticotomy in the tooth-borne mode was greater compared with other models. CONCLUSIONS: These results suggest that parasymphyseal step corticotomy with tooth-borne force application is a viable treatment option for true bony expansion in an adult mandible.


Assuntos
Arco Dental/cirurgia , Mandíbula/cirurgia , Fenômenos Biomecânicos , Tomografia Computadorizada de Feixe Cônico , Arco Dental/diagnóstico por imagem , Arco Dental/patologia , Arco Dental/fisiopatologia , Humanos , Mandíbula/diagnóstico por imagem , Mandíbula/patologia , Mandíbula/fisiopatologia , Osteotomia/métodos , Dente/patologia , Dente/fisiopatologia
15.
J Mater Sci Mater Med ; 27(6): 106, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27107890

RESUMO

One of the major challenges in tissue engineering of small-diameter vascular grafts is to inhibit intimal hyperplasia and keep long-term patency after implantation. Rapid endothelialization of the grafts could be an effective approach. In this study, QK, a peptide mimicking vascular endothelial growth factor, was selected as the bioactive substrate and loaded in electrospun membranes for enhancement of vascular endothelial cell growth. In detail, QK peptide was firstly introduced with poly(ethylene glycol) diacrylate into a thiolated chitosan solution that could transfer into hydrogel. Then, suspensions or emulsions of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) containing QK peptide (with or without chitosan hydrogel) were electrospun into fibrous membranes. For comparison, the electrospun PELCL membrane without QK was also fabricated. Results of release behaviors showed that the electrospun membranes, especially that contained chitosan hydrogel prepared by suspension electrospinning, could successfully encapsulate QK peptide and maintain its secondary structure after released. In vitro cell culture studies exhibited that the release of QK peptide could accelerate the proliferation of vascular endothelial cells in the 9 days. It was suggested that the electrospun PELCL membranes loaded with QK peptide might have potential applications in vascular tissue engineering.


Assuntos
Células Endoteliais/efeitos dos fármacos , Membranas Artificiais , Peptídeos/farmacologia , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Prótese Vascular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Liberação Controlada de Fármacos , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Peptídeos/química
16.
Int J Mol Sci ; 17(6)2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27231896

RESUMO

The adverse biological effect of nanoparticles is an unavoidable scientific problem because of their small size and high surface activity. In this review, we focus on nano-hydroxyapatite and TiO2 nanoparticles (NPs) to clarify the potential systemic toxicological effect and cytotoxic response of wear nanoparticles because they are attractive materials for bone implants and are widely investigated to promote the repair and reconstruction of bone. The wear nanoparticles would be prone to binding with proteins to form protein-particle complexes, to interacting with visible components in the blood including erythrocytes, leukocytes, and platelets, and to being phagocytosed by macrophages or fibroblasts to deposit in the local tissue, leading to the formation of fibrous local pseudocapsules. These particles would also be translocated to and disseminated into the main organs such as the lung, liver and spleen via blood circulation. The inflammatory response, oxidative stress, and signaling pathway are elaborated to analyze the potential toxicological mechanism. Inhibition of the oxidative stress response and signaling transduction may be a new therapeutic strategy for wear debris-mediated osteolysis. Developing biomimetic materials with better biocompatibility is our goal for orthopedic implants.


Assuntos
Substitutos Ósseos/química , Durapatita/efeitos adversos , Titânio/efeitos adversos , Materiais Biocompatíveis/química , Células Sanguíneas/efeitos dos fármacos , Humanos , Nanopartículas/efeitos adversos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Transdução de Sinais/efeitos dos fármacos
17.
Am J Orthod Dentofacial Orthop ; 148(3): 457-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26321344

RESUMO

INTRODUCTION: Corticotomy has proven to be effective in facilitating orthodontic tooth movement. There is, however, no relevant study to compare the biomechanical effects of different corticotomy approaches on tooth movement. In this study, a series of corticotomy approaches was designed, and their impacts on dentoalveolar structures were evaluated during maxillary canine retraction with a 3-dimensional finite element method. METHODS: A basic 3-dimensional finite element model was constructed to simulate orthodontic retraction of the maxillary canines after extraction of the first premolars. Twenty-four corticotomy approach designs were simulated for variations of position and width of the corticotomy. Displacement of the canine, von Mises stresses in the canine root and trabecular bone, and strain in the canine periodontal ligament were calculated and compared under a distal retraction force directed to the miniscrew implants. RESULTS: A distal corticotomy cut and its combinations showed the most approximated biomechanical effects on dentoalveolar structures with a continuous circumscribing cut around the root of the canine. Mesiolabial and distopalatal cuts had a slight influence on dentoalveolar structures. Also, the effects decreased with the increase of distance between the corticotomy and the canine. No obvious alteration of displacement, von Mises stress, or strain could be observed among the models with different corticotomy widths. CONCLUSIONS: Corticotomies enable orthodontists to affect biomechanical responses of dentoalveolar structures during maxillary canine retraction. A distal corticotomy closer to the canine may be a better option in corticotomy-facilitated canine retraction.


Assuntos
Processo Alveolar/fisiologia , Dente Canino/fisiologia , Análise de Elementos Finitos , Imageamento Tridimensional/métodos , Osteotomia/métodos , Técnicas de Movimentação Dentária/métodos , Fenômenos Biomecânicos , Humanos , Procedimentos de Ancoragem Ortodôntica/instrumentação , Desenho de Aparelho Ortodôntico , Braquetes Ortodônticos , Fechamento de Espaço Ortodôntico/métodos , Fios Ortodônticos , Ligamento Periodontal/fisiologia , Estresse Mecânico , Coroa do Dente/fisiologia , Técnicas de Movimentação Dentária/instrumentação , Raiz Dentária/fisiologia
18.
J Xray Sci Technol ; 23(5): 617-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26409429

RESUMO

OBJECTIVE: Despite various X-ray approaches have been widely used to monitor root resorption after orthodontic treatment, a non-invasive and accurate method is highly desirable for long-term follow up. The aim of this study was to build a non-invasive method to quantify longitudinal orthodontic root resorption with time-lapsed images of micro-computed tomography (micro-CT) in a rodent model. MATERIALS AND METHODS: Twenty male Sprague Dawley (SD) rats (aged 6-8 weeks, weighing 180-220 g) were used in this study. A 25 g orthodontic force generated by nickel-titanium coil spring was applied to the right maxillary first molar for each rat, while contralateral first molar was severed as a control. Micro-CT scan was performed at day 0 (before orthodontic load) and days 3, 7, 14, and 28 after orthodontic load. Resorption of mesial root of maxillary first molars at bilateral sides was calculated from micro-CT images with registration algorithm via reconstruction, superimposition and partition operations. RESULTS: Obvious resorption of mesial root of maxillary first molar can be detected at day 14 and day 28 at orthodontic side. Most of the resorption occurred in the apical region at distal side and cervical region at mesiolingual side. Desirable development of molar root of rats was identified from day 0 to day 28 at control side. The development of root concentrated on apical region. CONCLUSIONS: This non-invasive 3D quantification method with registration algorithm can be used in longitudinal study of root resorption. Obvious root resorption in rat molar can be observed three-dimensionally at day 14 and day 28 after orthodontic load. This indicates that registration algorithm combined with time-lapsed images provides clinic potential application in detection and quantification of root contour.


Assuntos
Imageamento Tridimensional/métodos , Reabsorção da Raiz/diagnóstico por imagem , Imagem com Lapso de Tempo/métodos , Raiz Dentária/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
19.
Zhongguo Yi Liao Qi Xie Za Zhi ; 39(1): 33-6, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-26027291

RESUMO

Wear of polyethylene (PE) tibial inserts is a significant cause of implant failure of total knee arthroplasty (TKA). PE inserts wear measurement and evaluation is the key in TKA researches. There are many methods to measure insert wear. Qualitative methods such as observation are used to determine the wear and its type. Quantitative methods such as gravimetric analysis, coordinate measuring machines (CMM) and micro-computed tomography (micro-CT) are used to measure the mass, volume and geometry of wear. In this paper, the principle, characteristics and research progress of main insert wear evaluation method were introduced and the problems and disadvantages were analyzed.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Polietileno , Humanos , Desenho de Prótese , Falha de Prótese , Tíbia , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X
20.
Int J Mol Sci ; 15(12): 22258-78, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25479073

RESUMO

With the rapid development of nanotechnology, a variety of engineered nanoparticles (NPs) are being produced. Nanotoxicology has become a hot topic in many fields, as researchers attempt to elucidate the potential adverse health effects of NPs. The biological activity of NPs strongly depends on physicochemical parameters but these are not routinely considered in toxicity screening, such as dose metrics. In this work, nanoscale titanium dioxide (TiO2), one of the most commonly produced and widely used NPs, is put forth as a representative. The correlation between the lung toxicity and pulmonary cell impairment related to TiO2 NPs and its unusual structural features, including size, shape, crystal phases, and surface coating, is reviewed in detail. The reactive oxygen species (ROS) production in pulmonary inflammation in response to the properties of TiO2 NPs is also briefly described. To fully understand the potential biological effects of NPs in toxicity screening, we highly recommend that the size, crystal phase, dispersion and agglomeration status, surface coating, and chemical composition should be most appropriately characterized.


Assuntos
Materiais Revestidos Biocompatíveis/toxicidade , Lesão Pulmonar/induzido quimicamente , Nanopartículas/química , Nanopartículas/toxicidade , Tamanho da Partícula , Titânio/química , Titânio/toxicidade , Animais , Cristalização , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA