Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 7(3): 1449-57, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25545550

RESUMO

The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.


Assuntos
Ligas/química , Alumínio/química , Materiais Biomiméticos/química , Biomimética/métodos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
2.
Anal Sci ; 19(12): 1587-92, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14696919

RESUMO

A sensitive and selective method for the determination of procaine hydrochloride with a Nafion-modified glassy carbon electrode has been developed. The voltammetric behavior of procaine hydrochloride on the Nafion-modified electrode indicated that the modified electrode not only increased the sensitivity of the determination of procaine hydrochloride, but also catalyzed the electrode process. Procaine hydrochloride was accumulated in Britton-Robinson buffer (pH 2.09) at a potential of -0.2 V (vs. SCE) for 180 s, and was then determined by differential pulse adsorptive stripping voltammetry. The effect of various parameters, such as the pH of the medium, the mass of drop-coated Nafion, the accumulation potential, the accumulation time and the scan rate, were investigated. Under the optimum conditions, a linear calibration graph was obtained in the concentration range of 6.0 x 10(-8) to 6.0 x 10(-6) mol l(-1) with a correlation coefficient of 0.9987. The relative standard deviation was 4.18% for eight successive determinations of 1.0 x 10(-7) mol l(-1) procaine hydrochloride, and the detection limit (three times signal to noise) was 7.0 x 10(-9) mol l(-1). A study of interfering substances was also performed, and the method was applied to the direct determinations of procaine hydrochloride in the injection solution of procaine hydrochloride and in rabbit serum.


Assuntos
Eletroquímica/instrumentação , Procaína/análise , Anestésicos Locais/análise , Anestésicos Locais/sangue , Animais , Calibragem , Carbono , Eletroquímica/métodos , Eletroquímica/normas , Eletrodos/normas , Polímeros de Fluorcarboneto , Procaína/sangue , Coelhos , Reprodutibilidade dos Testes
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(8-9): 1811-5, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15248954

RESUMO

A new method for the determination of the critical micelle concentration (CMC) of Triton X-100 in aqueous solution and beta-cyclodextrin solution by resonance Rayleigh scattering (RRS) has been developed. The method is based on the measurement of the RRS intensity of different concentration of Triton X-100 in aqueous solution and beta-cyclodextrin solution (6.0 x 10(-4) mol l(-1)). When the RRS intensities were plotted against the concentration of Triton X-100, an inflection point appeared at the Triton X-100 concentration of 5.0 x 10(-4) mol l(-1) in aqueous solution and 1.1 x 10(-3) mol l(-1) in beta-cyclodextrin solution, respectively. These values of concentration corresponded to the CMC of Triton X-100 in aqueous solution and beta-cyclodextrin solution, which also agreed closely with the results reported by surface tension and UV-Vis absorption spectrophotometry. Therefore, the present RRS method is very convenient, rapid and accurate and can be used as a new technology for the determination of CMC values of surfactants without any probe. The relationship between the RRS intensity and the concentration, aggregate state and the aggregate molecular size of Triton X-100 has been primarily discussed.


Assuntos
Octoxinol/análise , Espectrometria de Fluorescência/métodos , Micelas , Espalhamento de Radiação , Soluções , Água , beta-Ciclodextrinas
4.
Chem Commun (Camb) ; 50(56): 7416-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24846189

RESUMO

The present work demonstrates a generalized strategy using water-only hydrothermal oxidation to construct complex biomimetic micronanostructures on a series of metals and alloys, resulting in superhydrophilic surfaces. This general approach is environmentally-benign and cost-effective, which offers a unique clue for the rational fabrication of micronanoscale architectures and superhydrophilic surfaces.


Assuntos
Ligas/síntese química , Materiais Biomiméticos/síntese química , Química Verde/métodos , Metais/síntese química , Nanoestruturas/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA